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ABSTRACT

Leaf wetness detection is a crucial task in agricultural mon-
itoring, as it directly impacts the prediction and protection
of plant diseases. However, existing sensing systems suffer
from limitations in robustness, accuracy, and environmental
resilience when applied to natural leaves under dynamic real-
world conditions. To address these challenges, we introduce a
new multi-modal dataset specifically designed for evaluating
and advancing machine learning algorithms in leaf wetness
detection. Our dataset comprises synchronized mmWave raw
data, Synthetic Aperture Radar (SAR) images, and RGB im-
ages collected over six months from five diverse plant species
in both controlled and outdoor field environments. We pro-
vide detailed benchmarks using the Hydra [[1]] model, includ-
ing comparisons against single modality baselines and mul-
tiple fusion strategies, as well as performance under vary-
ing scan distances. Additionally, our dataset can serve as a
benchmark for future SAR imaging algorithm optimization,
enabling a systematic evaluation of detection accuracy under
diverse conditions.

Index Terms— Agriculture IoT, Multi-Modality Sensing,
SAR Imaging

1. INTRODUCTION

Agriculture is a significant part of the global economy, ac-
counting for approximately 4% of global GDP and exceeding
25% in some developing nations [2]. However, the increas-
ing frequency and severity of plant diseases show significant
threats to agricultural productivity, food security, and biodi-
versity [3]. A major factor underlying disease development is
leaf wetness, which is the presence of water on leaf surfaces.
It can be the result of dew, precipitation, fog, or irrigation [4].
The duration of leaf wetness is particularly critical, as it can
promote the growth of various pathogens, including Venturia
inaequalis, etc [S]]. As a result, accurate detection of leaf wet-
ness duration (LWD) is essential for effective monitoring and
control of plant diseases [6]]. Previous studies have demon-
strated the importance of accurately detecting LWD to pro-
tect crop yields in various species, including strawberries [[7],
grapes [8]], and lettuce [9].

To improve the performance of LWD detection, re-
searchers have explored various sensing modalities [10} [L1}

Fig. 1: Leaf Wetness Detection with RGB camera and SAR.

12, [13]]. However, existing systems still face significant limi-
tations related to sensing accuracy, environmental robustness,
and system efficiency. The leaf wetness sensors (LWS) uti-
lize synthetic leaves [12}[13]], which differ from real leaves in
size, shape, and material properties. These errors can result
in detection errors of up to 30 minutes. RGB imaging ap-
proaches [[10] are highly susceptible to variations in lighting.
In addition, mmWave-based techniques [11] are sensitive
to leaf movement caused by wind. Also, it required time-
consuming scanning procedures, which further compromised
system efficiency.

In this paper, we present the dataset used for training and
testing Hydra [, shown in Figure[I] Hydra is the first con-
tactless multi-modality sensing system explicitly designed
for accurate LWD detection. Built using commercial off-
the-shelf hardware, it integrates mmWave and RGB imaging
to enable direct, high-fidelity scanning of plant surfaces.
Additionally, Hydra combines deep learning with advanced
multi-modal data fusion, effectively overcoming challenges
associated with aligning data across different spatial and
temporal resolutions. It achieves a high detection accuracy
of 96% in controlled indoor scenarios and approximately
90% in challenging outdoor farm environments, including
rainy, dawn, and low-light night time. In particular, Hydra
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reduces the LWD detection error margin to just 2 minutes,
significantly outperforming prior approaches that relied on
synthetic leaves or single-modality sensing.

Our dataset comprises five distinct plant species, collected
over more than six months to capture a wide range of growth
patterns, spatial arrangements, and foliage distributions, thus
enhancing the diversity of the dataset. The data include both
indoor and outdoor environmental conditions to ensure ro-
bustness across deployment scenarios. Each sample consists
of raw mmWave data, Synthetic Aperture Radar (SAR) imag-
ing, and an RGB image, all carefully calibrated according
to the protocol established in [[1]]. The dataset can be found
at https://drive.google.com/drive/folders/

1COmg5vZgEJOYMNL1vSghvFn00OfyIi8Cm. This dataset

can serve as a benchmark to inspire future research on multi-
modal fusion and optimization of the SAR imaging algorithm.

2. UNDERSTANDING THE PROBLEM

2.1. mmWave Sensing

mmWave utilizes electromagnetic waves with wavelengths
ranging from 1 to 10 millimeters. This short wavelength en-
dows the mmWave radar with high sensitivity to fine surface
textures, making it well-suited for detecting subtle changes
such as leaf wetness. One of mmWave’s key advantages lies
in its responsiveness to material properties. Materials reflect
mmWave signals differently based on their permittivity, a
physical property that influences how electromagnetic waves
propagate through them. Water, which has significantly
higher permittivity than dry leaf tissue, alters the reflection
characteristics of wet leaf surfaces. This contrast in reflective
behavior enables mmWave systems to differentiate between
wet and dry leaves effectively [l [L1, [14} [15], providing a
powerful, contactless modality for leaf wetness detection.

2.2. Synthetic Aperture Radar Imaging

SAR is a well-established technique in radar systems. It can
generate high-resolution images by synthesizing a large aper-
ture through the relative motion between the radar and the
target. By effectively expanding the aperture size, SAR en-
hances the radar’s ability to capture fine-grained spatial de-
tails, which is critical for accurately identifying subtle fea-
tures such as leaf wetness. The example is shown in Figure 2]
When combined with frequency-modulated continuous-wave
(FMCW) chirps, the mmWave radar becomes highly sensi-
tive to range variations between the radar and the target. This
capability enables SAR to image multiple depth layers, pro-
viding cross-sectional views that offer a rich spatial context.

2.3. Leaf Wetness Detection

Leaf wetness is defined as the presence of water on the leaf
surface. It is a simple but critically important factor for agri-
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Fig. 2: Example of the dataset with RGB and SAR image

cultural health monitoring. The primary objective in detect-
ing LWD is to accurately classify whether a leaf surface is wet
or dry over time. From a machine learning perspective, this
problem introduces key questions around trustworthy classi-
fication: What specific features distinguish a wet leaf from a
dry one? Is it the spectral signature of water, micro-textural
cues on the surface, or some other latent factors? These am-
biguities complicate not only model training but also the in-
terpretability of the decision process, posing a barrier for de-
ploying models with confidence in agricultural applications.
Our dataset addresses these challenges by including di-
verse data collected under varying environmental condi-
tions. Each sample pairs high-resolution RGB images with
mmWave SAR data, both precisely calibrated, providing a
rich multi-modal foundation for robust and explainable model
development. This dataset enables researchers to benchmark
SAR imaging algorithms and multi-modality fusion strate-
gies. It supports evaluation across key dimensions, including
accuracy, resilience, generalization, and interoperability. For
both machine learning practitioners and agricultural technol-
ogists, this dataset offers a high-quality resource that bridges
the gap between controlled experiments and real-world de-
ployment. It is particularly well-suited for training deep
learning models, optimizing SAR-based imaging pipelines,
and advancing multi-modal fusion methods. Furthermore,
it opens new opportunities for research in explainable Al,
establishing a valuable benchmark for future innovations in
environmental sensing and precision agriculture.

3. DATASET

3.1. Implementation

As illustrated in Figure [3a] our SAR imaging system is
equipped with a two-axis mechanical scanner optimized for
high-speed data acquisition. The scanner is meticulously cal-
ibrated for plant-scale analysis, featuring a horizontal range
of 150 mm and a vertical range of 100 mm. The mmWave
radar mounted on this scanning platform is a Texas Instru-
ments (TT) IWR1642 radar module [16], which operates in
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Fig. 3: Data collection setup in indoor, outdoor, and farm.

the 77-81G H z frequency band. Each chirp signal consists
of 256 sampling points, and its frequency will increase from
fo = TIGHz to fr = 80.99GH:z with the bandwidth
B = 3.99GHz and frequency slope k = 70.295M Hz/ .
This radar captures raw mmWave reflections from plant sur-
faces, serving as the core sensing unit. Signal collection is
managed by the TI DCA1000EVM [17], which interfaces
with the radar to collect and store signals for subsequent
imaging and analysis.

To complement the SAR system, our prototype also inte-
grates a camera imaging module using an Azure Kinect sen-
sor [18]], strategically positioned at the center of the scanning
area. SAR and camera systems are carefully calibrated to
share a common field of view, as shown in FigureFl_] The fu-
sion of SAR-based mmWave imaging and RGB camera im-
agery offers a comprehensive, multimodal representation of
the leaf surface, enhancing detection accuracy and robustness.

3.2. SAR Imaging

SAR is a radar imaging technique that achieves high spatial
resolution by synthesizing a large aperture through relative
motion between the radar and the target [19]. In our system,
we integrate SAR with FMCW radar, which emits chirped
signals whose instantaneous frequency increases linearly over
time [20, 21]]. Upon receiving the backscattered signals, the
system performs a dechirping process to extract the beat fre-
quency, isolating key features indicative of target range and
reflectivity. These signals are expressed in the wave num-
ber domain, where spatial and geometric relations between
the radar and scatter points are accurately modeled. Using a
range migration algorithm, we convert multi-static measure-
ments into a monostatic equivalent via phase compensation,
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Fig. 4: Calibration of the RGB camera and SAR with the
scissor. The red rectangle is the shared field of view.

simplifying depth-based imaging. The final 2D image recon-
struction is achieved through an inverse Fourier transform of
the backscattered data, supported by Weyl’s representation
theorem([22]], which approximates spherical waves as a super-
position of plane waves. We implement and optimize the en-
tire imaging pipeline in Python, leveraging GPU acceleration
to support real-time and large-scale processing.

3.3. Dataset

Our indoor experiments spanned a six-month data collection
period across five diverse plant species, selected to capture
variations in leaf size, orientation, and structural complex-
ity. Throughout this period, the plants exhibited distinct
growth patterns, spatial arrangements, and leaf distributions,
contributing to the dataset’s richness and diversity. The
experimental setup positioned each plant at a distance of
200-500mm from the mmWave radar, and data collection
focused on two well-defined states: fully dry and fully satu-
rated leaf surfaces. In total, we compiled a dataset comprising
292 multimodal sample pairs. This includes 268 pairs col-
lected under controlled indoor conditions, as shown in Figure
@ and 24 pairs from outdoor environments, as shown in
Figure which exhibit dynamic environmental variability,
such as fluctuating lighting and weather. This comprehensive
dataset enables robust model training and evaluation under
both controlled and real-world conditions.

3.4. File Structure

Inside the dataset, there exist four folders: source code, RGB
image, SAR image, and their corresponding raw data. The
source code includes a SAR imaging algorithm written in
Python, as well as a GPU-accelerated version. Additionally,
for all datasets, all file names within each folder are identical,
representing samples captured simultaneously.

3.5. Dataset Naming Convention

The dataset adopts a structured naming convention to facil-
itate efficient sample identification and retrieval. Each file-
name consists of multiple segments separated by underscores



(1), encoding the following metadata:

e Group Status: Indicates the leaf condition, where 0
denotes a dry sample and 1 denotes a wet sample.

e Sampling Date:
MMDD format.

Represents the collection date in

» Sensor Distance: Specifies the closest distance from
the plant to the radar sensor, in millimeters.

¢ Sample Index: A unique identifier for the specific sam-
ple within the group.

* Cross-Section Distance (for SAR images): Indicates
the cross-sectional depth from the radar sensor where
the SAR image was captured.

For example, the file path:
0.0119.200-1_200. jpg

corresponds to a dry leaf sample (group 0) collected on Jan-
uary 19 (0119), with the plant positioned 200 mm from the
radar. It is the first sample (1) in that group, and the SAR
cross-section was recorded at a depth of 200 mm from the
radar.

In addition to processed SAR and RGB images, each sam-
ple directory contains the corresponding raw data files, allow-
ing for custom signal processing and further development of
the imaging algorithm.

3.6. Testing Algorithm

After constructing our dataset, we evaluate its utility through
a comprehensive benchmarking process centered on the Hy-
dra framework [1]], which employs a multimodal data fusion
algorithm for leaf wetness detection. Our primary evalua-
tion focuses on the accuracy of the classification. Specifi-
cally, the model’s ability to determine whether a leaf surface
is wet or dry. The Hydra algorithm uses a two-stage fusion
pipeline. First, it performs depth-aware fusion by aligning
SAR images captured at multiple depths with high-resolution
RGB imagery and extracts features through a Convolution
Neural Network (CNN). In the second stage, Hydra utilizes
a transformer-based encoder that models sequential relation-
ships across different SAR depths using depth-aware posi-
tional encoding and multi-head attention. This enables the
system to construct a coherent 3D understanding of plant sur-
faces, allowing robust classification under varying conditions.

4. EVALUATION

We conduct a comprehensive evaluation of Hydra to assess
its accuracy, robustness, and efficiency in detecting leaf wet-
ness under diverse environmental conditions. Our evaluation
focuses on distinguishing between wet and dry leaves. As
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Fig. 5: Overall performance for Hydra LWD.

shown in Figure Hydra achieves an accuracy of 96% =+
2.14% in indoor scenarios and maintains robust performance
with approximately 90% accuracy in real-world farm environ-
ments. For single modality baselines, the camera-only model
achieves 86.13%=+2.13% accuracy, while the SAR-only base-
line reaches 83.43% + 3.05%.

We also compare several multimodal fusion strategies
shown in Figure [5b] Hydra’s proposed depth-aware fusion
achieves 96% =+ 2.14%, which improves to 85.41% + 2.24%
with our data enhancement techniques. In contrast, early
fusion and late fusion methods yield 80.38% =+ 1.84% and
83.63% =+ 1.84% accuracy, respectively.

Our evaluation demonstrates that SAR imaging maintains
high accuracy across a range of scan distances shown in Fig-
ure Bd Shorter scan distances result in reduced resolution
and narrower coverage, leading to performance degradation.
For the scan distance longer or equal to 150 mm, with the
advantage of the multi-modality, the accuracy is above 90%,
which is 95.52% + 1.46%,91.32% =+ 2.65% and 82.1% +
4.13% for 200mm, 150mm and 100mm, respectively. They
improved from single modality accuracy which is 88.32% =+
1.58%, 83.17% = 2.9% and 80.3% = 4.32%. Hydra consis-
tently outperforms mmLeaf by preserving detection accuracy
and reducing scanning inefficiency by 25%. These results
highlight the effectiveness of multi-modality in mitigating the
trade-offs between scan efficiency and detection precision.

To evaluate the impact of imaging configuration, we ana-
lyze Hydra’s performance across varying SAR scan distances
as shown in Figure Hydra maintains high accuracy at



wider scan distances: 95.43% +1.47% at 200 mm, 94.68% £
1.97% at 175 mm, and 93.38% =+ 2.56% at 150 mm. How-
ever, performance degrades at shorter distances, dropping to
89.28% =+ 4.05% at 125 mm and 84.10% =+ 4.53% at 100 mm
due to reduced resolution and a limited field of view. These
results underscore Hydra’s superior capability in leveraging
multi-modal features and optimizing SAR imaging for accu-
rate and efficient leaf wetness detection.

5. RELATED WORK

Artificial Intelligence in Agricultural IoT. The conver-
gence of artificial intelligence and the Internet of Things
(AIoT) has transformed agricultural practices, enabling in-
telligent, scalable, and connected farm management [23].
Long-range communication technologies, such as LoRa and
satellite-based networking, improve data coverage and re-
liability for rural applications [24} |25, 26} 27 28]. On the
sensing parts, modalities like RF and VNIR imaging facil-
itate soil health monitoring [29]. At the same time, multi-
modality, machine learning, and reinforcement learning ap-
proaches have been employed to optimize object detection
in foliage, disease management, irrigation, and resource al-
location [30, 131} 132} |33]], contributing to the development of
sustainable and data-driven agricultural ecosystems.

6. CONCLUSION

This dataset paper presents a comprehensive and multi-modal
dataset that addresses critical gaps in current leaf wetness
detection research. By combining mmWave SAR and RGB
imaging across a diverse set of plant species and environ-
mental conditions, we enable rigorous benchmarking of ma-
chine learning models under both controlled and real-world
settings. Our evaluations using the Hydra architecture demon-
strate the value of depth-aware multi-modal fusion and pro-
vide clear baselines for camera-only, SAR-only, and hybrid
models. We further analyze the impact of fusion strategy and
SAR scan distance, highlighting key trade-offs in detection
accuracy and imaging efficiency. This dataset not only ad-
vances the state of the art in precision agriculture sensing but
also offers a foundational resource for the machine learning
community to explore robust, explainable, and efficient multi-
modal systems.
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