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Abstract—Predicting Leaf Wetness Duration (LWD) is crucial
for plant disease control. However, the lack of standardized
techniques to measure LWD precisely hampers accurate pre-
diction. While previous works have explored various methods,
they fail to quantify the actual water on the leaf, undermining
their practical effectiveness and accuracy. This paper presents
Adonis, an innovative approach using millimeter-wave (mmWave)
radar to address the complexities of leaf wetness detection. It
introduces a new metric, Leaf Wetness Level (LWL), for mea-
suring leaf surface water. We employ advanced signal processing
on mmWave signals to extract more wetness-related features in
dynamic environments. Furthermore, we develop a Contrastive
Learning Feature Extraction model to precisely capture wetness
features and design a calibration process for the inference stage
to detect LWLs accurately in real-world fields. Using a frequency-
modulated continuous-wave (FMCW) radar within the 77 to 81
GHz band, Adonis is meticulously evaluated across various plants.
Adonis can detect LWLs with the mean absolute error (MAE) of
4.43 in controlled environments and 6.49 in real farm conditions.
The performance significantly surpasses traditional Leaf Wetness
Sensors, which have an MAE of 11.84 indoors and 14.32 in
field conditions. These findings have substantial implications for
enhancing disease prediction and crop management.

I. INTRODUCTION

Food crises are becoming increasingly severe worldwide,

with nearly 282 million people in 59 countries facing acute

food insecurity in 2023 [1]. The rise in plant disease outbreaks

further threatens food security and negatively affects the

development of agriculture [2]. Therefore, effective disease

control is essential to improve agricultural productivity and en-

sure sustainability [3]. Leaf Wetness Duration (LWD), which

signifies the period of free water presence on the surface of

the leaves, directly influences the spread of plant disease [4].

Accurately predicting LWD plays a vital role in disease control

and early prevention [5], as it provides better insights into the

drying process and disease risk for precise interventions [5],

[6]. Recent studies have shown that being attentive to LWD

can significantly protect the yields of crops such as apples,

corn, and onions [7]–[9].

Currently, researchers have proposed a variety of methods

to predict and detect leaf wetness, including LWD modeling

[10]–[13], RGB cameras [14], Leaf Wetness Sensors (LWSs)

[15], [16] and millimeter-wave (mmWave) radar based ap-

proach [17], [18]. However, these approaches exhibit inherent

limitations when predicting LWD in real-world scenarios.
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Fig. 1: Leaf Wetness Levels detection with Adonis.

1) Low Accuracy: Although modeling-based techniques

can estimate LWD using various meteorological information,

they are sensitive to the quality of environmental data [19],

making them not applicable for obtaining accurate results in

real farm conditions. The accuracy of systems that use RGB

cameras is highly dependent on lighting conditions [20], highly

limiting their effective operating times. In addition, LWSs that

use synthetic leaves differ from real leaves in size, shape,

and material, leading to discrepancies between the detected

wetness and actual results [21].

2) Low Precision: Current methods lack precision in

predicting LWD since they do not adequately reflect the

wetness level. For example, systems based on RGB cameras

and mmWave radar treat wetness detection as a binary clas-

sification problem (wet or dry) without quantifying the water

amount. Such binary approaches fail to precisely capture the

nuanced changes in leaf wetness over time, which is crucial

for LWD prediction.

3) High System Overhead: Due to their cumbersome and

complex designs, these methods result in significant system

overhead from deployment and maintenance. For example,

ensuring LWD modeling works properly requires deploying

numerous sensors to collect various climate variable data,

which inevitably incurs substantial costs [22]. Since each LWS



TABLE I: Methods Comparison for Leaf Wetness Detection.

Method Accuracy Precision System Overhead

LWD modeling [10]–[13] Low High High
RGB camera [14] Low Low Low

Leaf Wetness Sensor [15] Low High High
mmLeaf [17] High Low High
Hydra [18] High Low High

Adonis High High Low

can only be placed in one location and there is no consensus on

the spatial scale it represents [19], deploying and calibrating

them over a large area is particularly challenging. Moreover,

although mmLeaf can employ synthetic aperture radar (SAR)

technology for fine-grained imaging of plants, its sampling

efficiency is so low that the time cost of obtaining a single scan

result is considerable, which can take up to six minutes [17].

As shown in Table I, previous methods have significant

limitations on precisely monitoring leaf wetness changes.

Therefore, developing a system that can monitor leaf wetness

with high precision and accuracy in complex agricultural en-

vironments is critical while maintaining low system overhead.

This paper proposes Adonis, a novel mmWave-based system

to facilitate accurate leaf wetness monitoring. We introduce

Leaf Wetness Level as a quantitative metric detailed in Section

II-A to measure the amount of water on the leaf surfaces. We

used a high-resolution mmWave radar to sense subtle changes

in wetness, as shown in Fig. 1. Since mmWave electromagnetic

signals are sensitive to surface texture variations, they can

demonstrate different reflection strengths. The reflected signals

are enhanced with Fast Fourier Transformation to extract

multi-dimensional signal features that are fine-grained and

environmentally resilient, enabling precise leaf wetness mon-

itoring even in complex real-world environments. The multi-

dimensional signal features are fed into a neural network-

based regression model, which performs feature extraction to

distinguish between different wetness levels accurately.

Adonis outperforms previous systems regarding environ-

mental robustness, accurate LWL detection, and low system

overhead design.

However, several challenges must be addressed in develop-

ing Adonis:

1) Environmental Noise Mitigation: The real farm envi-

ronment presents a significant challenge due to its dy-

namic and complex nature. Environmental factors such

as wind can introduce variations in noise, which can

significantly affect the detection of wetness levels. Our

solution involves advanced signal processing algorithms

to generate 2D signal maps incorporating leaf move-

ment, position, surface texture, information, and signal

strength. Combining these data points gives us a robust

representation of leaf surface changes that are resilient

to environmental variations. This ensures consistent data

collection and reliable leaf wetness detection.

2) Leaf Wetness Levels Regression Model: Extracting

water features from complex signal maps is challeng-

ing. Additionally, as defined in Section II-A, LWL is

a relative value dependent on complete dryness and

saturated wetness, making it challenging to determine

LWLs directly from a single wetness feature. To address

this, Adonis incorporates an innovative regression model

to capture and determine the correlations between wet-

ness features. Based on observations from Section II-C,

we perform feature extraction by combining contrastive

learning with a Convolutional Neural Network (CNN),

as shown in Section III-C. Such extraction compares

data from the same plant and position with different

water amounts, isolating wetness variations from en-

vironmental changes for enhanced accuracy. We also

include a Wetness Extraction Layer, detailed in Section

III-D, which combines baseline saturated wetness and

complete dryness to extract LWL-related features accu-

rately.

3) Model Calibration: We directly exploit the signals

transmitted and reflected by the mmWave radar for

detection. Still, a single mmWave sensing result is easily

affected by environmental changes, thereby affecting

the system’s effectiveness across different environments.

To address this issue, we design a calibration process

with small overheads in the inference stage, applied

when scanning different plants or adjusting the radar-

plant distance, as detailed in Section III-F. This process

involves refining the regression model using a small

number of extreme values, including saturated wetness

and complete dryness, to ensure system efficiency and

enhance its accuracy and reliability.

We implement Adonis using a commercial off-the-shelf

(COTS) mmWave radar. We evaluate various plant types, sizes,

densities, and environmental conditions. Extensive testing of

Adonis demonstrates its excellent performance across diverse

settings. In controlled indoor environments, Adonis achieves

the mean absolute error (MAE) of 4.43. In the real farm with

different crops and environmental conditions, Adonis main-

tains the MAE of 6.47. In contrast, traditional Leaf Wetness

Sensors achieve an MAE of 11.84 indoors and 14.32 in real-

field conditions. Despite these dynamic conditions, Adonis
consistently outperforms existing methods, highlighting its

robustness and precision. This is a significant advancement

in precision agriculture and plant health monitoring.

The contributions of this paper can be summarized as

follows:

• To the best of our knowledge, Adonis is the first con-

tactless sensing system specifically designed to measure

the amount of water on a leaf, and Leaf Wetness Level

(LWL) is the first metric that quantitatively represents leaf

wetness.

• We use reflected mmWave signals with signal processing

algorithms to create signal feature maps incorporating

leaf movement, position, and surface texture. Our model

integrates contrastive learning to improve feature ex-

traction based on signal characteristics. This approach



(a) RSS vs Leaf Wetness (b) Received Signal Feature

Fig. 2: Received Signal Feature. RSS has a strong relationship

with LWL. The signal shows less distinguishable features

among the same LWL.

effectively addresses challenges in distinguishing wetness

features from environmental noise, significantly improv-

ing the precision and reliability of LWL detection under

various conditions.

• The system demonstrates robust performance across dif-

ferent plant types and complex real-field conditions. It

achieves the MAE of 4.43 indoors with various plants.

Under real-field conditions, it maintains the MAE of 6.49.

The traditional Leaf Wetness Sensors show an MAE of

11.84 indoors and 14.32 in real field conditions. This

showcases the system’s adaptability and effectiveness in

varied environmental settings.

II. PRELIMINARY AND EMPIRICAL STUDY

This section introduces LWL as a metric for quantifying

leaf wetness. We examine approaches that leverage mmWave

technology for LWL detection and review previous efforts to

enhance precision.

A. Leaf Wetness Level

Accurately predicting LWD is crucial for effective plant

disease management. It relies heavily on knowing the exact

amount of water on the leaf surface, as discussed in Section

I. However, no metric exists to accurately evaluate this. To

address this gap, we introduce LWL, a new metric that

quantitatively represents leaf wetness. LWL is expressed as

a continuous variable that varies from 0% to 100%. For the

0% represents completely dry which is the plant in a well-

ventilated environment at a stable temperature and humidity

until no visible droplets remain on the leaf surface indicating

it is completely dry. The 100% represents spraying water on

the leaf until its surface is fully coated with visible droplets

and remains stable, maximally saturated, indicating saturated

wetness. The scale between these points is divided into equal

increments to represent varying degrees of moisture. For

example, a reading of 50% signifies that the leaf is halfway

between completely dry and fully saturated. This detailed

and accurate measurement of leaf wetness is essential for

monitoring drying processes and predicting plant diseases.

B. mmWave-based Leaf Wetness Sensing

As stated in the previous work for mmWave measurements

[17], [18], [23], [24], different materials exhibit varying per-

mittivity and reflect mmWave signals distinctively. Further-

more, the high-frequency bandwidths of the mmWave radar

make it sensitive to minor environmental changes [25]. This

sensitivity allows it to detect minute variations in the water

amount on the leaf. Therefore, mmWave radar is ideal for

precise and reliable LWL detection.

In our experiments, the plant is placed approximately

200 mm from the radar in a stationary room with a fixed

temperature and no wind. We monitor the transition from

saturated wetness to completely dry conditions, sampling with

the mmWave and ground truth every 5 minutes over 75

minutes, repeating the process ten times. We apply Range

Fast Fourier Transformation for the received signal to extract

Received Signal Strength (RSS) based on the plant’s position.

At the same time, a moisture meter provides ground truth

measurements, as discussed in Section IV-B. We normalize the

RSS and the ground truth value to a scale of 0-100. As shown

in Fig. 2a, we utilize a boxplot to illustrate the normalized

RSS distribution at different times. The blue line indicates the

trend of the mean normalized RSS value, and the red dotted

line shows the ground truth of the change in LWLs. A strong

correlation is observed between the normalized RSS and the

wetness level; the RSS decreases as the LWL decreases. This

observation highlights the potential of using the mmWave

reflection intensity to detect changes in LWLs.

C. mm-Wave-based Received Signal Feature

Directly using RSS has a notable limitation. The short

wavelength of the radar would make it more sensitive to envi-

ronmental changes [23], [26]. mmLeaf [17], and Hydra [18],

which uses Synthetic Aperture Radar-Multiple-Input Multiple-

Output (SAR-MIMO), need to move the radar to simulate a

large aperture that will make the RSS unstable. Only high-

resolution imaging of plants with detailed spatial features can

not extract accurate and precision LWL information.

We conduct a feature analysis of the received signal to ad-

dress this limitation and identify crucial elements for building

an effective model. We randomly select samples from the

entire dataset with varying LWLs and use Principal Com-

ponent Analysis (PCA) to extract features from the received

signals, analyzing the relationships between different plants.

Our crucial observation, illustrated in Fig. 2b, shows that

samples collected from the same plant in the same location,

marked in the same color, exhibit a much stronger relationship.

Conversely, samples with the same LWLs, represented by the

same marker, revealed few similar features. This finding under-

scores the challenge faced by traditional feature extraction and

regression methods, which struggle to achieve precise results

due to the low similarity among samples with similar LWLs.

Therefore, it is necessary to design an innovative method to

extract valuable features that provide accurate values.

Based on this observation, we define a group as samples

collected from the same plant and location but with varying



Fig. 3: Adonis Model Overview: The Adonis model design includes three main procedures: Signal Feature Maps, Contrastive

Learning Feature Extraction, and Wetness Extraction Layer.

LWLs. This grouping leverages plant-specific consistency. It

helps us to design Adonis by extracting and comparing the

wetness feature within a group to achieve high precision and

accurate detection of LWL.

III. SYSTEM DESIGN

A. Overall Architecture

We present Adonis, an advanced leaf wetness sensing sys-

tem. Adonis integrates mmWave technology to facilitate the

detection of various LWLs. Its precise and durable architec-

ture, illustrated in Fig. 3, comprises key components: mmWave

radar, signal processing (Section III-B), the Contrastive Learn-

ing Feature Extraction (Section III-C), Wetness Extraction

layer (Section III-D), Model Training (Section III-E) and

Calibration (Section III-F). In the following, we describe these

components in detail.

B. mmWave Signal Processing

As stated in [23], [26], mmWave RSS is susceptible to

environmental changes. This sensitivity poses a significant

challenge: the relationship between RSS and LWLs can be

substantially degraded in dynamic environments. This variabil-

ity complicates accurate detection and requires robust signal

processing techniques to maintain reliability and precision

under various conditions.

We use Fast Fourier Transformation (FFT) to address these

challenges and extract high-dimensional feature maps that

preserve RSS across different environments while capturing

more wetness-related changes.

To handle dynamic environmental effects, Adonis uses a

Range-Doppler (RD) map to extract movement information.

This technique leverages the Doppler effect to determine

the relative velocity of the target leaves, ensuring that the

relationship between the RSS and wetness level changes is

maintained in different conditions. The RD map is computed

in two stages: transforming the IQ data from the time domain

to the range domain and from the range domain to the Doppler

domain. The range-domain transformation is defined as:

R(m,n) =

K∑
k=1

IQ(m, k) · e−j2π kn
N (1)

where IQ(m, k) represents the IQ data for chirp index m
and sample index k. The term e−j2π kn

N applies the Fourier

Transform to convert the time-domain samples into range-

domain bins, with N being the number of points in the range

FFT.

The Doppler-domain transformation is then performed as:

RD(m,n) = 20 · log10
(∣∣∣∣∣

P∑
p=1

R(p, n) · e−j2πmp
M

∣∣∣∣∣
)

(2)

where RD(m,n) represents the Range-Doppler feature map,

with m being the Doppler bin index and n the range bin index.

Here, R(p, n) is the range-domain data obtained from the first

transformation for chirp p and range bin n. The term e−j2πmp
M

applies the Fourier Transform to convert the chirp-domain data

into Doppler-domain data, resolving the velocity information.

M is the number of points in the Doppler FFT. The magnitude

of the resulting complex value is then taken and expressed in

decibels (dB) using the 20 · log10 operation. The Example of

the Range-Doppler map is shown in Fig. 4a.

The Range-Azimuth (RA) mapping precisely locates the tar-

get plant within the radar’s field of view by integrating azimuth

data, ensuring consistent signal readings despite plant position

changes or environmental conditions. An example of the RA

map is shown in Fig. 4b. This map is derived using the range-

domain transformation, as detailed in Eq. 1. Subsequently, the

azimuth-domain transformation is performed as follows:

RA(m, θ) =

N∑
n=1

Rn(m, k) · δ
(
θ − sin−1

(
Δφmnλ

2πd

))
(3)

where RA(m, θ) represents the RA feature map, where m
is the range bin and θ is the estimated angle of arrival



(a) RD Map (b) RA Map (c) RPA Map

Fig. 4: Example of signal feature map processed from the

received IQ data.

(AoA). The term Rn(m, k) is the range-transformed IQ data

from antenna n calculated in Eq. 1. The Dirac delta function

δ
(
θ − sin−1

(
Δφmnλ

2πd

))
accumulates signal intensities corre-

sponding to the angles calculated using the phase differences

Δφmn, the wavelength λ, and the antenna separation d. N is

the number of antennas.

In addition, phase angle changes provide crucial information

about the variations in leaf surface texture, which fluctuate

with the amount of water present. The dielectric constant

and conductivity of a medium affect the propagation speed

of the wave, causing changes in the phase angle [23]. This

relationship is effectively captured using a Range-Phase Angle

(RPA) map, correlating these texture variations with changes

in wetness level to enhance detection accuracy. The RPA map

is derived using the range-domain transformation, as detailed

in Eq. 1. Following this, the Phase Angle transformation is

performed as follows:

RPA(m,φ) =

K∑
k=1

∣∣∣∣∣
N∑

n=1

Rn(m, k)

∣∣∣∣∣ · δ
(
φ− φmk · 180

π

)
(4)

where RPA(m,φ) represents the Range-Phase Angle feature

map for range bin m and phase angle φ. The term Rn(m, k)
is the range-transformed IQ data from antenna n calculated

in Eq. 1. The magnitude
∣∣∣∑N

n=1 Rn(m, k)
∣∣∣ is calculated by

summing the contributions from all antennas. The Dirac delta

function δ
(
φ− φmk·180

π

)
accumulates signal intensities corre-

sponding to the phase angles calculated using φmk (the phase

of the signal for range bin m and sample index k), converted

to degrees. N is the number of antennas. An example of the

calculation results for the Range-Phase Angle map is shown

in Fig. 4c.

By integrating these signal processing techniques, Adonis
maintains high precision and environmental resilience, even

under varying conditions.

C. Contrastive Learning Feature Extraction

The PCA results of Section II-B reveal that features are

similar within the same plant and position but less consistent

within the same LWLs. Traditional feature extraction methods

aim to identify consistent features in samples to achieve

accurate results, but the lack of unique features complicates

precise detection. Additionally, mmWave signals from a single

scan are more susceptible to distribution issues, resulting in

a low signal-to-noise ratio (SNR), complicating the precise

detection of LWLs. This requires designing an innovative

model to extract wetness features and create a high-precision

regression model.

Contrastive learning creates robust representations by learn-

ing embeddings in which the extracted features from similar

pairs are closer together, and those from different pairs are

farther apart. Initially applied in face recognition [27] and

signature verification [28].

We utilize contrastive learning to address the challenge of

precise LWL detection. We define a group as samples from the

same radar and plant setup but with different LWLs as detailed

in Section II-C. This technique enhances intragroup similarity

and intergroup distinctiveness, enabling the regression model

to focus on the wetness feature changes within a group and

improving detection accuracy. Furthermore, concentrating on

each group allows the model to filter out noise, leading to

more precise and reliable wetness detection.

We use ResNet-18 [29] to extract the feature from each

signal feature map as introduced in Section III-B to imple-

ment contrastive learning. CNNs like ResNet-18 are ideal

for analyzing 2D images because they can capture spatial

hierarchies and local patterns. ResNet-18’s residual layers

allow deeper network architectures without encountering the

vanishing gradient problem. This enables the network to learn

complex and abstract features by preserving information across

multiple layers.

Due to the different information presented by the three

signal feature maps, we apply three separate ResNet-18 models

to extract features. Additionally, we incorporate a Global

Average Pooling (GAP) layer [30]. This layer calculates the

spatial mean of feature maps from the final convolution

layer, streamlining data complexity while preserving essential

features without adding new trainable parameters. We then

concatenate the extracted features to prepare for regression.

We will first pre-train the feature extraction model. The

feature maps within the same group are labeled 1, and those

from different groups are labeled 0. To measure the similarity

between these feature maps, we calculate the L2 distance,

defined as

dij =

√∑
k

(fk
i − fk

j )
2 (5)

where fi and fj are the feature vectors of samples i and j,

respectively.

The contrastive loss function we used is formulated as

follows:

CL =
1

N

∑
i,j

[yij · d2ij + (1− yij) ·max(0,m− dij)
2] (6)

In this loss function, yij is a binary label that indicates if the

pair (i, j) is similar or different, and m is a margin parameter

that sets the minimum distance for dissimilar pairs. The loss

function penalizes similar pairs far apart and dissimilar pairs

closer than the margin, driving the network to position the



same group together and different groups apart. Including

a margin ensures that dissimilar pairs maintain a minimum

separation, reducing noise influence and enhancing overall

model performance.

D. Wetness Extraction Layer

To accurately determine LWL, we employ a wetness ex-

traction layer. This layer is essential for standardizing LWL

measurements and removing noise. The wetness extraction

layer is defined as:

LWL = (W −D)− (F −D) (7)

where W represents the wetness baseline (100% wetness), D
represents the dryness baseline (0% wetness), and F is the

current extracted feature. Calculating the difference between

the wetness and dryness baselines (W − D) allows us to

establish a net wetness value that aligns with the defined

LWL boundaries. By subtracting the dryness feature (D)

from the extracted feature (F ), we ensure the model focuses

on the wetness feature and mitigates environmental noise.

Finally, subtracting this result from the net wetness aligns the

measurement with the definition of LWL, ensuring that the

final values accurately reflect the relative amount of water on

the leaf.

E. Model Training

To train our model, we use the mean squared error (MSE)

as the loss function and mean absolute error as the evaluation

metric. MSE measures the average of the squared differences

between predicted and actual LWLs, which is particularly

effective for regression tasks because it significantly penal-

izes more significant errors. This encourages the model to

make precise predictions by focusing on reducing substantial

deviations. We use MAE to calculate the average absolute

differences between the predicted and actual values for perfor-

mance evaluation. MAE offers a straightforward interpretation

of prediction accuracy and is less sensitive to outliers than

MSE, providing a precise measure of the average prediction

error. The MSE and MAE is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (8)

MAE =
1

n

n∑
i=1

|yi − ŷi| (9)

where yi represents the actual values, ŷi represents the

predicted values, and n is the number of samples.

F. Calibration

Based on Section II-C, our scan method is susceptible to

subtle environmental changes. We implement a calibration

stage with a small system overhead to ensure prediction ac-

curacy. Calibration is necessary before each detection, mainly

when dealing with different plants and changes in the radar’s

relative position.

(a) mmWave Radar (b) Indoor Setup

(c) Soybean Field Setup (d) Corn Field Setup

Fig. 5: Adonis setup with mmWave Radar: Deployment in

various scenarios, including indoor, soybean, and corn fields.

During the inference stage, we first collect data from

extreme values, representing complete dryness and saturated

wetness. We use the extreme data to refine the entire model.

This process includes refining the Contrastive Learning Fea-

ture Extraction to maintain intragroup similarity and enhance

intergroup dissimilarity, ensuring precise feature extraction.

Furthermore, this calibration refines the regressor to detect

LWLs accurately. By systematically calibrating the model, we

ensure its robustness and reliability across various environ-

mental conditions, improving its overall performance.

IV. IMPLEMENTATION

A. System Implementation

We develop a prototype for Adonis, as shown in Fig. 5a,

using the Texas Instruments (TI) IWR1642 mmWave radar

[31], which operates in the 77 to 81 GHz frequency range.

The radar features four horizontal receiver antennas, providing

excellent azimuth angle resolution. To complement the radar,

we use a DCA 1000EVM [32] for initial signal collection

and processing, which sets the stage for detailed analysis.

B. Ground Truth

Due to the lack of a specialized sensor to track LWLs

accurately, we designed an innovative method to establish

a reliable ground truth. We employ a commercial moisture

meter from General Tools [33], commonly used to measure

wetness levels on wood surfaces. This device measures the

electrical resistance between two pins, as illustrated in Fig.

6. Although not specifically designed to detect leaf surface

wetness, it serves our needs. By gently pressing the moisture

meter pins onto the leaf surface, we can detect variations



(a) Dry Leaf (b) Wet Leaf

Fig. 6: Moisture Meter Utilized for Ground Truth.

in electrical resistance corresponding to the leaf’s moisture

content. We utilized the change in readings to measure the

LWLs. Initially, we calibrated the moisture meter by setting

the baseline readings for complete dryness at 0% The readings

are then normalized based on these baselines to determine the

LWLs.

C. Baseline

We use commercial Leaf Wetness Sensors in our exper-

imental setup, namely the PHYTOS 31 model [15], which

measures water changes in surface according to electrical

resistance. However, the metal parts of the sensor caused more

backscatter, which could have compromised the mmWave’s

precision. To compromise this problem, we employ a plant

of comparable size in the same habitat as the species under

observation. To simulate leaf locations, we arrange three

sensors in an equal distribution throughout the plant’s foliage.

We calibrate the readings by setting baselines for complete

saturation and total dryness. We normalize the other readings

based on these baselines to determine the LWLs.

D. Data Collection

Our experimental setup gathers data from six diverse plant

types, focusing on plant size, leaf size, and leaf density

variations. Data collection occurs in both controlled indoor

environments and real field environments. We include a stable

environment shown in Fig. 5b and a simulated wind environ-

ment for the indoor setup using a fan. We also conducted in-

situ experiments in two fields totaling 3.67 acres, planted with

soybeans shown in Fig. 5c and corn in Fig. 5d. The distance

between the closest point of the plant and the radar ranged

from 200 to 400 mm, with an extracted range of 100 to 500

mm to capture comprehensive signal feature maps, as detailed

in Section III-B. Each data collection group involves spraying

plants. It treats them until they reach saturated wetness and

then allows them to dry completely, treating each plant’s entire

wet-to-dry process as a group, as detailed in Section II-C.

Each group receives 6 to 12 samples based on temperature and

evaporation rates. The process collects 508 groups with 4849

samples, including 358 groups and 3330 samples from indoor

environments and 180 groups and 1789 samples from outdoor

environments, ensuring robust data for analyzing LWLs under

different conditions.

E. System Evaluation

To evaluate the precision of our models, we employ a 5-fold

cross-validation, iterated 10 times across different datasets.

This rigorous approach minimizes variability and bias from

the diverse dataset, ensuring that our performance metrics

accurately reflect the model’s capabilities under various con-

ditions. To simulate the inference stage during the evaluation,

we calibrate the model according to the process described

in Section III-F. This calibration step is crucial for aligning

the model’s predictions with real-world conditions, thereby

enhancing the reliability of our results.

V. EVALUATION

A. Overall Performance

In our evaluation of Adonis, we focus on its precision

in discerning various LWLs. Our system uses an extensive

dataset to demonstrate exceptional accuracy, achieving the

MAE of 4.43± 0.57. Compared, LWSs exhibit a much larger

MAE of 11.27 ± 2.08. As in the comparison shown in Fig.

7a, these results indicate a significant difference between

Adonis and traditional sensors compared to the ground truth.

LWSs show greater error and variability in the detection of

LWLs. This discrepancy is primarily due to the sensor not

measuring the leaf surface; different sensor placements can

lead to inconsistent results. Even different sensor places in

the same plant can have different readings, making them less

reliable and accurate compared to Adonis.

B. System Overhead Analysis

Compared to the mmLeaf system [17], which uses mmWave

radar with MIMO-SAR techniques for plant imaging, Adonis
shows significant improvements in efficiency and practicality.

We conduct 50 tests to evaluate the elapsed time for each

system. While mmLeaf requires extensive processing time,

typically exceeding 455.58 seconds per scan, and necessitates

scanning the entire area, Adonis achieves accurate measure-

ments in under 8.21 seconds per scan by only needing a single

scan. Furthermore, LWS [15] can only be deployed in one

specific location, and modeling LWD [10]–[13] requires nu-

merous weather sensors, making widespread deployment and

calibration challenging. This system overhead is crucial for

large-scale agricultural applications. The ease of deployment

and rapid data collection of Adonis allows frequent scanning

of multiple plants, improving leaf wetness changes monitoring

and allowing farmers to make timely decisions based on

wetness trends.

C. Calibration Analysis

Based on Section III-B, mmWave is highly sensitive to sub-

tle changes in dynamic environments, necessitating calibration

as designed in Section III-F to accommodate its instability.

We train the model using the same dataset and validate the

results with and without calibration. As shown in Fig. 7b, the



(a) LWLs Detection (b) Calibration Performance

Fig. 7: Adonis Precision and Calibration Performance

model without calibration significantly increases the MAE to

13.43±1.1, while the calibration improved precision, reducing

the MAE to 4.43 ± 0.57. This demonstrates the critical role

of calibration in improving the accuracy and reliability of the

model in varying environmental conditions.

D. Signal Processing Evaluation

In Section III-B, we detail three signal processing tech-

niques utilized in Adonis: Range-Doppler, Range-Phase Angle,

and Range-Azimuth mappings. Each method is essential for

accurately detecting LWLs by capturing unique aspects of the

mmWave signal. To assess the effectiveness of each feature

map, we conduct an ablation study [34] that systematically

removes one or two maps and tests the remaining combina-

tions. The result is shown in Fig. 8. When using all three

signal processing techniques, the system achieves the MAE of

4.43 ± 0.57. Removing the Range-Doppler, Range-Azimuth,

and Range-Phase Angle techniques result in higher MAEs

of 10.18 ± 1.66, 8.12 ± 1.42, and 9.91 ± 1.75, respectively.

When only one feature map is retained, leaving either Range-

Doppler, Range-Azimuth, or Range-Phase Angle, the MAEs

increase to 16.68 ± 2.57, 15.49 ± 3.38, and 14.20 ± 2.62,

respectively. These results confirm that each signal processing

technique captures distinct and complementary information,

underscoring the necessity of all three methods for robust and

accurate LWL detection.

E. Application in Different Environments

In evaluating the performance of Adonis under various

environmental conditions, we focus on different plant sizes

and leaf sizes, wind/no wind scenarios, and indoor/real farm

settings.

We evaluate Adonis on plants with large, sparse, and small,

dense leaves, the two most common plant patterns. Research

indicates that large leaves are prevalent in warm, humid

regions to maximize photosynthesis, while smaller leaves are

typical in cold, dry areas for better water use efficiency [35].

This comprehensive test ensures that Adonis performs well in

all major plant categories. Our system consistently performs

well in all types of plants shown in Fig. 9a, achieving the

MAE of 4.14 ± 0.52 for plants with large sparsity leaves

and 3.97 ± 0.71 for small dense leaves, demonstrating its

adaptability and accuracy regardless of plant size and leaf

characteristics. Meanwhile, we test with the LWS for large,

Fig. 8: Ablation Study Performance for Signal Processing

sparse, and small, dense leaves to obtain the MAE for

10.52± 1.16, 11.63± 2.12.

As stated in Section II-C, mmWave signals are easily

affected by subtle changes, especially wind in outdoor envi-

ronments. We focus on moderate wind conditions and exclude

extreme scenarios, as high wind speeds rapidly dry the leaves,

rendering them irrelevant for analyzing the wetness drying

process. To assess the impact of wind, we conduct experiments

in controlled indoor environments with and without fans sim-

ulating wind conditions. The system achieves high accuracy

without wind with the MAE of 3.05 ± 0.43. Under windy

conditions, the MAE increases to 5.02 ± 0.72, indicating the

system’s resilience to environmental disturbances. This robust-

ness under windy conditions showcases Adonis’s capability to

maintain accurate LWLs detection despite external factors. See

Figure 9b for a comparison of the results. Additionally, we test

with LWSs, obtaining MAEs of 8.63±2.24 without wind and

10.72± 3.74 under windy conditions.

The performance of the Adonis system is further evaluated

by assessing its accuracy at varying distances from a target

plant in an indoor setting. Measurements are taken from

the closest point of the plant to the radar. As depicted in

Fig. 9c, the system achieves its lowest MAE of 3.98 when

the plant was positioned 200mm away. When the distance

increases to 300mm and 400mm, the MAE slightly rises

to 4.32 and 4.72, respectively. This indicates a trend where

increasing distance results in decreased mmWave resolution.

These findings suggest that while Adonis maintains robust

performance over different distances relative to the target.

We also evaluate Adonis in both indoor and in-situ settings.

Indoor experiments are conducted in controlled environments,

while outdoor experiments occur in real fields with corn and

soybeans. As shown in Fig. 9d, Adonis achieves the MAE

of 4.05± 0.63 indoors and 6.47 ± 1.02 outdoors, confirming

its reliability and effectiveness in diverse environments. The

indoor and outdoor results for the LWS are 11.84 ± 2.06
and 14.32± 5.28, respectively. These results demonstrate that

Adonis can provide accurate LWL measurements for effective

disease prediction and agricultural management in real-world

scenarios.

VI. RELATED WORK

Leaf Water Content. Accurate leaf water content (LWC)

measurement is crucial for agricultural management. LWC,
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Fig. 9: Performance for Adonis Application in Various Scenario.

defined as the amount of water in leaf tissue, is typically

measured as a percentage of the leaf’s fresh weight and

is closely related to but distinct from Leaf Wetness Levels

(LWLs). Techniques like near-infrared spectroscopy [36] and

mmWave technology [37], [38] offer real-time monitoring

advantages due to their sensitivity and penetration depth,

enabling continuous assessment of leaf moisture levels.
Real-World Denoising Applications. Denoising in real-world

sensing applications is vital for data accuracy. Deep learning

methods, such as autoencoders and generative adversarial

networks (GANs), have significantly enhanced signal quality

in environmental monitoring and health diagnostics [39]–

[44]. These techniques effectively reduce noise, improving the

clarity and usability of sensor data collected in noisy environ-

ments, which is crucial for precise leaf wetness detection.
Agriculture Internet of Things. Integrating the Internet of

Things (IoT) and Artificial Intelligence (AI) into agriculture

has revolutionized traditional farming practices, creating a

powerful AIoT approach to enhance efficiency and decision-

making [45]. Sensing in agriculture enables monitoring of

soil moisture and macronutrients [46]–[49], providing data

for precise resource management and early issue detection.

Communication in agriculture faces challenges, such as limited

connectivity in remote areas and high energy demands for

data transmission. Technologies like LoRa [50]–[54], and

satellite [55] address these issues by enabling low-power, long-

range communication. They provide reliable data transfer from

distributed sensors to centralized systems.

VII. CONCLUSION

This paper presents the development, deployment, and

comprehensive evaluation of Adonis, an advanced system for

precise Leaf Wetness Levels detection. We introduce a new

metric, Leaf Wetness Level, which accurately quantifies the

amount of water on a leaf surface. Adonis addresses critical

challenges such as environmental denoising, LWL regression

modeling, and calibration. We incorporate mmWave signal

with three distinct signal processing techniques to explore

wetness features in dynamic environments: Range-Doppler,

Range-Azimuth, and Range-Phase Angle maps. Extensive

experiments conducted under various real-world conditions,

including different leaf sizes, densities, and environmental fac-

tors, demonstrate that Adonis consistently outperforms existing

methodologies in accuracy and reliability. It achieves a mean

absolute error of 4.43 in controlled settings and maintains

an MAE of around 6.49 in real farm environments, whereas

traditional Leaf Wetness Sensors have an MAE of 11.84
indoors and 14.32 in real-field conditions. These findings

highlight Adonis’s robustness and precision in detecting leaf

wetness, representing a significant advancement in precision

agriculture.
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E. Säckinger, and R. Shah, “Signature verification using a “siamese”
time delay neural network,” in Advances in neural information process-
ing systems, 1994.

[28] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Proceedings
of IEEE CVPR, 2005.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE CVPR, 2016.

[30] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2014.

[31] Texas Instruments, “Iwr1642,” https://www.ti.com/product/IWR1642,
2024, accessed: 2024-07-31.

[32] T. Instruments, “Dca1000evm,” https://www.ti.com/tool/DCA1000EVM,
2024, accessed: 2024-07-31.

[33] General Tool, “Moisture meter,” https://generaltools.com/digital-tools/
moisture-humidity-digital-tools/moisture-meters, accessed: 2024-07-31.

[34] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, “Ablation
studies in artificial neural networks,” 2019. [Online]. Available:
https://arxiv.org/abs/1901.08644

[35] I. J. Wright, N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Dı́az,
R. V. Gallagher, B. F. Jacobs, R. Kooyman, E. A. Law, M. R. Leishman,
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