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Abstract
The ability of certain bat species to navigate in dense vegetation based on trains of short biosonar
echoes could provide for an alternative parsimonious approach to obtaining the sensory
information that is needed to achieve autonomy in complex natural environments. Although bat
biosonar has much lower data rates and spatial (angular) resolution than commonly used
human-made sensing systems such as LiDAR or stereo cameras, bat species that live in dense
habitats have the ability to reliably detect narrow passageways in foliage. To study the sensory
information that the animals may have available to accomplish this, we have used a biomimetic
sonar system that was combined with a camera to record echoes and synchronized images from 10
different field sites that featured narrow passageways in foliage. The synchronized camera and
sonar data allowed us to create a large data set (130 000 samples) of labeled echoes using a
teacher–student approach that used class labels derived from the images to provide training data
for echo-based classifiers. The performance achieved in detecting passageways based on the field
data closely matched previous results obtained for gaps in an artificial foliage setup in the
laboratory. With a deep feature extraction neural network (VGG16) a foliage-versus-passageway
classification accuracy of 96.64% was obtained. A transparent artificial intelligence approach
(class-activation mapping) indicated that the classifier network relied heavily on the initial rising
flank of the echoes. This finding could be exploited with a neuromorphic echo representation that
consisted of times where the echo envelope crossed a certain amplitude threshold in a given
frequency channel. Whereas a single amplitude threshold was sufficient for this in the previous
laboratory study, multiple thresholds were needed to achieve an accuracy of 92.23%. These findings
indicate that despite many sources of variability that shape clutter echoes from natural
environments, these signals contain sufficient sensory information to enable the detection of
passageways in foliage.

1. Introduction

Achieving autonomous navigation in natural envi-

ronments for systems such as drones or terrestrial

vehicles could enable automation of outdoor tasks

that are associated with applications that include

precision agriculture [1], vegetation mapping [2–4],

detection of wildfires [5, 6] and wildlife tracking

[7, 8]. One of the most fundamental navigational

tasks that such a system would have to accomplish in

these applications is the ability to find passageways in

foliage [9].

In terms of sensing, the state of the art for
systems that are to achieve autonomy in outdoor
environments is the use of optical methods such as
stereo vision or LiDAR [10–14]. However, despite
their established capabilities, these sensing modalities
also have their drawbacks: camera vision fails under
conditions of poor visibility [15] such as darkness or
fog [16], and while LiDAR operates readily in the dark
it has been reported to fail in fog [17]. Besides their
vulnerability to weather conditions, stereo vision, and
especially LiDAR systems, also generates very high
data rates (e.g. over 250 000 points per revolution
at five revolution per second; HDL-64E S3 LiDAR
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sensor, Velodyne LiDAR, San Jose, CA [18]) which
result in a high computational cost for data handling
and processing [19].

Similar to LiDAR, the conventional approach to
sonar-based mapping of an environment has been
based on the formation of narrow beams [20],
although the beams that can be achieved with ultra-
sound are always much wider than those of a laser.
Despite its inability to replicate the angular resolution
of laser or vision systems [21], conventional sonar
resolves different targets by narrow beams that pro-
duce echo returns when aimed between targets that
are much lower than the returns when the sonar is on
target. With this approach, large beamwidths result in
poor spatial (angular) resolution which precludes the
resolution of closely spaced targets and hence narrow
passageways between them.

Bat species hunting prey in dense forest envi-
ronments, such horseshoe bats (Rhinolophidae [22])
and Old World leaf-nosed bats (Hipposideridae
[23]), can navigate using biosonar as their primary
source of sensory information about their surround-
ings [24]. This is a noteworthy ability, since bat
biosonar is characterized by even wider beamwidths
(62◦ ± 52◦ standard deviation across a set of different
species [25]) than can be found in human-made sonar
(typically <10◦ [25]). Since bats have only two ears
that are placed fairly close together, consideration of
binaural beamforming cannot be expected to close
the gap in beamwidth between engineered sonar and
bat biosonar. In addition to the wide beams, the
unpredictable locations of the individual leaves and
other reflectors in foliage result in random echo wave-
forms (‘clutter’) that do not lend themselves readily
to the detection of patterns that may be related to the
presence of a passageway [26]. Finally, bats operate on
streams of pulsed biosonar echoes with duty cycles
ranging from 1.7% to 57.1% [27]. Given that the
typical flight speed of bats ranges from 2 m s−1 to
3 m s−1 [28], and with a sonar-sensing range that is
either limited by the fairly high propagation losses
of ultrasound in air or the confines of the spaces a
bat can operate in within a densely vegetated habitat,
bats will have to detect the presence of a passageway
in foliage based on a small number of echoes. As a
result of this situation, it can be hypothesized that
bats have evolved ways to find narrow passageways
in foliage based on wide beams and a small num-
ber of unpredictable echo waveforms. If this ability
could be reproduced by human-made sonar it would
have a transformative impact on achieving auton-
omy in natural environments without limitations that
are imposed by the much bulkier, slower and more
energy-consuming systems that are needed for the
current technical options.

An earlier study has already demonstrated the
ability to detect gaps in an artificial hedge set up in
the laboratory [29]. These classifications were per-
formed by a deep neural network (DNN) model that

operated on spectrogram representations of the echo
signals and was able to achieve a detection accuracy
of up to 99% [29]. Furthermore, a transparent arti-
ficial intelligence (AI) approach has indicated that
the rising flank of the echoes conveyed most of the
sensory information that the DNN used to detect
the passageways in the laboratory setting. While the
laboratory arrangement of artificial foliage that was
studied in this previous work has resulted in echo
waveforms that appeared unpredictable to the human
observer, it is highly likely that they were less variable
than echoes from natural foliage. Potential sources of
additional variability seen in natural foliage could be
a greater variability in leaf size and shape and in the
leaf density of the foliage, as well as more variable
foliage surfaces [26, 30–33]. The latter could be of
particular importance for determining the presence
of a passageway, since passageways in natural foliage
could be obscured by other features in foliage surfaces
with similar geometries. As in the previous work, we
will attempt to distinguish foliage and gap echoes
based on a simple spike code [29]. This is to serve
as a test of the hypothesis that timing differences in
the rising flank of the echo are the salient features
that allow gap detection. If successful, this would also
demonstrate that finding gaps in foliage does not
require the large computational expense associated
with DNNs.

The goal of the current research was to investi-
gate whether the finding of passageways in natural
outdoor environments based on biomimetic sonar
echoes is possible despite all these potential sources
of additional variability. Like the preceding laboratory
study [29], the current work makes use of deep-
learning classifiers but adds a student–teacher net-
work approach in which camera images acquired in
parallel with the sonar echoes can be used to create
a large labeled data set to facilitate echo analysis.
With these large labeled data sets, the deep-learning
approach can be put to test with outdoor data to
establish whether finding narrow passageways with
biomimetic sonar in foliage is possible in the real
world.

2. Methods

All echo data used in the analysis were acquired with a
biomimetic sonar (figure 2) [19] that consisted of one
ultrasound emitter [electrostatic loudspeaker, Series
600 open-face ultrasonic transducer, diameter 38 mm
(SensComp, Livonia, MI, USA), resonance frequency
around 50 kHz] and two receivers [microelectrome-
chanical system capacitive microphones consisting of
Knowles FG23629 capsules with an approximately
flat response from 10 to 125 kHz integrated into a
Mononmic microphone (Dodotronic, Rome, Italy)].
Each microphone was equipped with a conical horn
to serve as a baffle. Over a length of 10 cm, the cones
transitioned from an outer diameter of 5 cm to an
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Figure 1. Examples of different outdoor settings with gaps in foliage that were used for data collection.

inner diameter of 5 mm that served as an opening
for the microphone. While the biomimetic sonar was
equipped with two microphones, all results below are
based on recordings from one of the two microphones
that was selected based on it providing a better signal-
to-noise ratio.

The ultrasonic emitter was used to emit a sonar
pulse with a waveform that featured a carrier
with a linear downward frequency modulation from
100 kHz to 20 kHz over a duration of 2 ms. A Ham-
ming window was used as the envelope for the pulse.
Digital-to-analog conversion of the pulse waveform
was carried out with a conversion rate of 400 kHz
and 16 bit resolution in a microcontroller (Arduino
Due, Arduino, Ivrea, Italy). The same microcontroller
with the same sampling rate and resolution was also
used for digitizing the received echo waveforms. The
returning foliage echoes were recorded over a time
window with a length of 25 ms that started with the
beginning of the emitted pulse. Hence, the first 2 ms
of each recording contained a recording of the direct
transmission of the pulse from the emitter to the
receiver, whereas the remaining 23 ms of the recording
contained only echoes. A small video camera (Hero 4,
GoPro Inc., San Mateo, CA, USA) was mounted
vertically beneath the loudspeaker at a distance of
12 cm and was aligned with the loudspeaker’s point-
ing direction. The camera was used to collect an image
(resolution 1280 × 720 pixels) alongside each of the
recorded sonar echoes.

The image and echo data were collected from
natural foliage of bushes and small trees that had

small gaps in them (figure 1). A total of 10 sites
distributed over the Virginia Tech campus and
the neighboring Virginia Tech Corporate Research
Center Campus in Blacksburg, VA, USA were selected
for these recordings. The woody plant species that
made up the foliage at these recording sites were
Cercidiphyllum japonicum, Quercus ilex, Schefflera
arboricola, Prunus laurocerasus, Photinia glabra,
Celtis australis, Acer negundo, Buxus sempervirens and
Magnolia grandiflora. All plants were identified based
on the reference camera images taken (online plant
image classification tool Pl@ntNet [34]).

The experimental sites were sorted into two dif-
ferent categories based on the width of the respective
gap in the foliage: narrow (from 15 cm to 20 cm) and
wide (from 25 cm to 30 cm). The gaps were either
‘O-shaped’ with foliage on all sides (at five of the
experimental sites) or ‘U-shaped’ with foliage on both
sides and the ground at the bottom (at the remaining
five experimental sites). The sonar was positioned at
three different distances to the frontal surface of the
foliage (1.5 m, 2 m, 2.5 m). The sonar was mounted on
a tripod that was positioned at points that were spaced
at intervals of 5 cm along a straight line segment of
2 m in length that was oriented parallel to the foliage
surface. The starting poin was chosen so that the scan
line included positions where the sonar was pointed
into the gap as well as points were it was pointed at
foliage. At each position along the sonar scan line, the
sonar was rotated in azimuth about the tripod axis
over a total distance of ±5◦ from the direct line of
sight to the foliage with a step width of 2.5◦. Across
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Figure 2. Data collection and teacher–student approach to training an echo classifier starting with an camera image classifier as
teacher (bottom row) and the echo classifier as the student (top row).

all sites, a total of 127 390 echoes and synchronized
camera images (10 sites × 41 positions × 5 rotations
× 3 distances × 20 repetitions) were collected.

All camera images of foliage (with or without a
gap) were cropped to a central square-shaped section
that was sized to match the area illuminated by the
sonar. To accomplish this, the side length of these
images was determined based on the widest −6 dB
beamwidth of the sonar (32◦ at 20 kHz). This
beamwidth corresponds to a diameter of 86 cm at a
distance of 1.5 m and 1.4 m at a distance of 2.5 m.
Projecting these distances into the camera image
plane resulted in image widths ranging from 160 to
267 pixels.

In an initial processing step, the echo recordings
were cropped from their original length of 25 ms
to a segment of 18 ms that included the echo but
not the pulse. To determine the starting time of the
echo return, the echo envelope was estimated using
a sequence of local waveform maxima in sliding win-
dows of length 0.25 ms. The maxima connected with a
spline interpolation to yield the envelope estimate. As
a reference for the envelope amplitude, the standard
deviation of the noise was computed from the final
3 ms of each echo recording, where—at a distance
of more than 4 m—no echoes were expected. The
beginning of the echo was then estimated at the time
when the envelope amplitude exceeded five times the
standard deviation of the noise. The duration of the
echo segment was chosen to cover the time of flight
corresponding to the measured depth of the foliage
(maximum 2.7 m, i.e. a time of flight of ∼16 ms ),
plus a 2 ms safety margin to include any multi-path
echoes from inside the foliage.

To compute the Fourier spectrogram representa-
tions of the echo segments, different Hamming win-
dows that varied in length from 0.5 ms (200 points) to
5 ms (2000 points) and window overlap values from
0% to 95% were tested for their potential effect on

classification accuracy. The echo spectrograms were
cropped to a range from 20 to 100 kHz along the
frequency dimension based on the frequency content
of the pulses. The classifiers either used the raw echo
spectrogram amplitudes or amplitudes within a range
that was clipped at −15 dB from the peak amplitude
to remove background noise.

The camera image and echo data were used to
train an echo-based classifier for distinguishing gaps
from continuous foliage using a teacher–student
model (figure 2) [35, 36]: in the first step of this
process, a vision-based classifier was trained on a
subset of 5000 camera images that were hand labeled
and then divided into 75% training and 25% testing
data. In the second step, the trained vision-based
classifier was used to create a much larger set of
echoes that were labeled based on the vision-based
classification of the respective camera images. This
vision-labelled data set contained 127 390 echoes that
were—like the previous camera image data—divided
into 75% training and 25% testing data.

In order to compare the current work with pre-
vious laboratory results on foliage-gap echo classi-
fication [29], two simple classifiers were tested as
references for the more advanced classifiers that are
being tested here for the first time in this context:
the most basic classifier was based on echo energy
and had been previously used as a reference for the
classification of the laboratory echo data [29]. It was
used here for the same purpose and made its decision
based a single scalar quantity, i.e. the sum of the
squares of the echo amplitude values that served as an
estimate for the echo energy.

A basic convolutional neural network (CNN) was
tested to provide a simple deep-learning reference for
the more advanced classifiers. Like all DNNs used in
the present work, the basic CNN classifier operated
on echo spectrograms as its input. It consisted of five
convolution layers, each followed by a max-pooling
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Figure 3. Transfer-learning model for camera image/echo spectrogram classification. The input of the classifier is either a camera
image (for the teacher network) or an echo spectrogram (for the student network). The final stage of the network, i.e. the classifier
proper, was a linear combination for the camera images and a multi-layer perceptron for the echoes spectrogram.

layer with a stride of two and a rectified linear unit
(ReLU) activation function. The classification result
was computed using two dense layers followed by
a sigmoid activation function. The two dense layers
have 1024 nodes and one node, respectively.

To assess whether a much deeper state-of-the-
art CNN network could improve classification per-
formance, a CNN based on the VGG16 architecture
[37, 38] was tested. This DNN architecture was used
for the classification of the camera images as well as
the foliage echoes. The feature-extraction part of a
VGG16 consists of a stack of five sets of convolution
layers, each followed by a max-pooling layer with
a stride of two along both camera image directions
[37]. The number of convolution layers in each of the
five sets was (in the direction of data flow) two, two,
three, three and three, respectively. The convolution
layers in the first set contained 64 filters each, the
layers in the second set contained 128 filters each and,
in the third set, there were 256 filters per layer. All
subsequent convolution layers in sets four and five
contained 512 filters each. After the feature extraction
performed by the convolution stages, the feature maps
were flattened into a vector that was used as input to
three fully connected network layers with 4096, 4096
and 1000 nodes, respectively.

For camera image classification (figure 3), the
weights in the feature-extraction part of the net-
work were taken from a version of the VGG16 that
had been pre-trained on camera images from the

ImageNet Large Scale Visual Recognition Challenge
[37, 39]. For the current work, these weights remained
frozen, whereas the weights of the classifier part of
the network were trained based on the hand-labelled
data set of foliage images. Two different classifier
parts were added to the feature-extraction part of the
VGG16 network in order to map the features onto a
classification decision: in the first and simplest version
of the classifier part, a linear combination of weights
for the features and an additive bias was used to map
from the flattened feature vector onto a scalar output.
The final output, i.e. an estimate for the probability
of foliage, was computed by passing the output of
the linear combination through a sigmoid activation
function. In the second and more complex version
of the classifier part, a multi-layer perceptron (MLP)
[40] replaced the original fully connected layers of
the original VGG16 architecture. The MLP contained
three fully connected layers with 4096, 4096 and one
node(s), respectively. The activation functions of the
first two layers of the MLP were ReLu functions. As
was the case for the simple linear-combination classi-
fication layer, the last layer of the MLP classifier used a
sigmoid activation function to map the scalar output
of the classifier to an estimate of the probability of the
input being foliage.

In order to increase the reliability of the classi-
fications obtained from the image-based classifiers,
two-sided thresholds were applied to the probability
estimates that came out of the sigmoid function. This
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Figure 4. Neuromorphic signal representation: examples of multiple threshold-crossing times in two different frequency
channels.

was done for both classifier networks tested, i.e. the
linear combination as well as the MLP. Using this two-
sided threshold, camera images with an estimated
probability for foliage greater than or equal to 0.95
were classified as foliage and those with a probability
for foliage less than 0.05 were classified as gaps. Cam-
era images for which the estimated probability values
fell between these two thresholds were discarded from
the sample that was used to train the echo classifier.
In this way, the echo-based classifier was only trained
on data for which the image-based classifier had
determined the target class with a high reliability.

For echo spectrogram classification, VGG16
feature-extraction networks were combined with the
same two types of classifier parts as for the camera
image classification, i.e. linear combination and
MLP. However, in case of the echo spectrogram
classifiers, the weights in the feature-extraction
part were unfrozen and hence the weights for the
feature-extraction and classification parts were being
trained at the same time.

To explore which features were used by the
CNNs to make the gap-versus-foliage decisions, class-
activation mapping (CAM) [41] was applied to inves-
tigate whether the classifier network weighted specific
regions of the echo spectrogram particularly strongly
in its decision. The CAM network used for this
purpose was derived from the VGG16-based echo
classifier networks by replacing the classification part
of the network by a global average pooling (GAP)
operation [42] that produces a spatial average over
the 512 feature maps that were generated in the
last convolutional layer of the network. The CAM
network made its target-class decisions based on the

weighted sum of the averaged feature values. This
sum of weighted VGG16 feature maps was pro-
jected back to the dimensions of the original echo
spectrogram to indicate the relative importance of
different regions of the echo spectrogram for the
class decision. To facilitate this projection, the max-
pooling layers were removed from the VGG16 inside
the CAM network so that the final class-activation
map retained the same size as the input echo
spectrograms.

A simple spiking model was used to explore the
suitability of a neuromorphic representation [43, 44]
of the echo spectrograms for detecting passage-
ways in foliage. The spiking model produced a one-
dimensional vector that recorded the times when
the echo amplitude in a certain frequency band
crossed a given threshold for the first time. The
threshold-crossing times were determined for 50 dif-
ferent frequency bands with center frequencies spaced
uniformly between 20 and 100 kHz and a uniform
bandwidth of 1.6 kHz. For each frequency band,
the crossing times were determined for a set of 17
uniformly spaced amplitude threshold values ranging
from 0.2 to 0.6 relative to the normalized output
amplitude of the respective bandpass channel. The
output amplitudes was normalized across the differ-
ent bandpass channels into a value range between
0 and 1 by subtracting the minimum value and
dividing by the difference between maximum and
minimum values. The vectors consisting of the
threshold-crossing times were fed into either a linear
discriminant analysis or a MLP consisting of three lay-
ers with 64, 32 and one node(s), respectively, to carry
out the foliage-versus-gap classification (figure 4).
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Figure 5. Relationship between the accuracy achieved by image-based gap-versus-foliage classifiers and the portion of data
retained as a function of the two-sided threshold value: (a) linear-combination classifier and (b) multi-layer perceptron classifier.
In each graph, the black line shows accuracy (left-hand axis) and the gray line shows the portion of data retained (right-hand
axis). The location of the two-sided threshold is given by the distance between the lower and upper threshold with the center as
50% on a per cent scale.

3. Results

The accuracy achieved by the image-based classifiers
and the portion of data that was retained by the two-
sided-threshold mechanism depended on the thresh-
old value and the type of classifier network used
(figure 5). As the region where samples were rejected
increased to 90% of the full range, the accuracy
on the retained samples increased to 99.5% for the
linear-combination and 99.6% for the MLP classifier.
While the two classifier types yielded similar classi-
fication performance they differed in the portion of
the camera image samples that were discarded due to
low confidence in their classification. For the linear-
combination classifier, the portion of discarded sam-
ples was 1.7% at 90% of the probability range being
included by the two-sided thresholds (figure 5(a)).
For the MLP classifier, this portion of rejected data
was much higher, at 13.1% (figure 5(b)). Based on
these results, a linear-combination classifier with a
two-sided threshold enclosing 90% of the range was
adopted for creating the automatically labeled data set
for training the echo classifier.

The classification performance of the energy-
based classifier was characterized by the area under
the receiver operating characteristic (ROC) curve
(AUC) (figure 6). The AUC was found to be 68.8%
when tested on echo data compounded across all
10 test sites (figure 6(a)). While well above chance
level (i.e. 50%), this level of performance would
generate numbers of false alarms and/or misses that
would be irreconcilable with highly reliable naviga-
tion. In addition, the energy-based classifier showed
poor generalization across the different field sites,
as evident from a wide scatter in the ROC curve
estimates for the individual data sets belonging to
each of the field sites (figure 6(b)). The difference
between the best performance (AUC 92.8%) and the

worst performance (AUC 67.0%) found across sites
was 25.8% (figure 6(b)).

The simple five-layer CNN was found to have a
much better performance than the energy classifier,
achieving an AUC of 96.9% across all field sites. Using
the VGG16 CNN resulted in yet another substan-
tial improvement across all sites, with an AUC of
99.2%. In addition, the VGG16 classifier displayed
much less variation across the different field sites
(minimum AUC 89.8%, maximum 100.0%) than the
energy-based classifier (figure 6(b)).

The classification accuracy achieved by the VGG16
CNN classifier was found to depend on the over-
lap parameter of the spectrogram representation of
the echoes. The accuracy tended to increase with
increasing overlap as long as the overlap was below
approximately 50% of the window length. For overlap
values above 50%, the classifier accuracy saturated at
its maximum value (figure 7(a)). Unlike the window
overlap, varying the window length from 200 points
(0.5 ms) to 2000 points (5 ms) did not affect the
classification performance in any systematic fashion.
The slight variations observed were contained within
a range of 1.3% (from 95.4% to 96.7%; figure 7(b)).
Based on these findings, a 256-point Hamming win-
dow with a 243-point overlap was adopted to com-
pute the Fourier spectrograms of the echoes that were
used to compare the VGG16 CNN classifier with the
other spectrogram-based classifiers (table 1).

The CAM classifier performed slightly less well
than the full VGG16 CNN classifier from which
it was derived, with an AUC of 96.3%. The MLP
classifier based on the crossing times for multiple
amplitude thresholds (17 thresholds, from 0.2 to 0.6,
with a step with of 0.025) delivered a performance
(AUC 97.5% over all sites) that fell between the
results for the VGG16 and class-activation mapping
classifiers (figure 6(a)). The results from the class-
activation mapping indicated that the CNN classifiers
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Figure 6. Receiver operating characteristic curves for the detection of gaps in foliage. (a) Classification performance across all 10
field sites with different classifiers: pre-trained VGG16 CNN (solid black), class-activation mapping (solid gray) based on the echo
spectrograms, multi-layer perceptron (MLP) based on multiple threshold-crossing times (dashed black), classification based on
total energy (dashed gray). (b) Classification performance for the 10 individual field sites: echo-energy classifier (field sites, solid
gray lines) pre-trained VGG16 CNN validated in different sites (dashed black lines), pre-trained VGG16 CNN (across all sites,
solid black line).

Figure 7. Relationship between classification accuracy and the spectrogram parameters window length and overlap for the
VGG16 CNN classifier. (a) Classification accuracy as a function of overlap, with curves for the shortest (0.5 ms, solid gray), a
medium (2.75 ms, dashed black) and the longest (5 ms, solid black) window length tested. (b) Classification accuracy as a
function of window length for the highest overlap tested (95%).

relied heavily on a narrow region of the echo spectro-
grams that was closely aligned with the rising flank of
the echo (figure 8).

For all CNN classifiers, the provision of echo
spectrograms thresholded in amplitude at a level of
−15 dB down from the maximum value to remove
low-amplitude noise resulted in better performance
than that achieved when the raw spectrograms were
used as inputs. This was true across all three deep
learning approaches with the difference in the mean
accuracy being 1.43% on average (table 1). All three
differences between raw and threshold echo spectro-
grams were statistically significant (t-test with Bon-
ferroni correction, any of the t-tests has p < 0.01, 50
accuracy values obtained via 10 repeats and five-fold
cross-validation).

For the neuromorphic classifiers, echo represen-

tations utilizing multiple threshold-crossing times

were found to result in better performance than that

obtained when single-threshold-crossing-time repre-

sentations were fed into same classifier (i.e. LDA or

MLP). The average difference in accuracy between

single- and multiple-threshold representations was

6.18% (table 1). The MLP-based classifiers yielded a

better performance than the LDA-based ones when

using the same input representations (i.e. single-

threshold or multiple-threshold). All accuracy dif-

ferences seen between the different neuromorphic

representations (i.e. single/multiple threshold(s)) and

classifier portions (i.e. MLP/LDA) were found to be

statistically highly significant (t-test with Bonferroni
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Table 1. Classification accuracies (%) of difference CNN models and inputs represented by mean
values and the respective standard deviations estimated based on 10 repeats and five-fold
cross-validation.

Model Spec. Raw echo spectrogram
Thresholded

echo spectrogram

CNN
Five-layer 91.53 ± 0.49 93.21 ± 0.72

Pre-trained 95.77 ± 0.32 96.64 ± 0.44
CAM 89.68 ± 0.41 91.42 ± 0.49

Neuromorphic

Single threshold + MLP 85.98 ± 0.86
Single threshold + LDA 81.23 ± 0.89

(Linear Discriminant Analysis)
Multiple thresholds + MLP 92.23 ± 0.52
Multiple thresholds + LDA 87.34 ± 0.74

Figure 8. Examples of echo spectrograms (thresholded at −15 dB) with the respective class-activation maps superimposed. The
top row (a)–(c) shows echoes from foliage, the bottom row (d)–(f) shows echoes from gaps.

correction, any of the t-tests had p < 0.01, 50 accu-
racy values obtained via 10 repeats and five-fold
cross-validation).

4. Discussion

The field echoes studied here are likely to contain a
much larger variability than the echoes from labora-
tory experiments that have been previously reported
[29]. This additional variability could pose a challenge
to reliably extracting the presence of a passageway
from the echoes and could even render the laboratory
methods useless under field conditions. However,
despite this expected greater variability, the methods
previously developed in a laboratory setup [9, 29]
were found to be effective in the field as well. The
DNN-based classifiers operating on echo spectro-
gram representations delivered an almost identical
performance to what had previously been achieved
in the laboratory (an accuracy of ∼97% in the lab-
oratory [29] as well as in the field). However, the
DNN-based classifiers had to be improved by using
a deeper feature extraction portion of the network to

maintain this performance. This demonstrates that
the DNN methods had sufficient flexibility to deal
with addition of variability in the field data. The
need for a deeper network could be seen as an indi-
cation that detecting a passageway in the field data
indeed poses a greater challenge than in the laboratory
data.

As in the laboratory work, the transparent AI
approach pointed at the rising flank of the field
echoes as the main source of relevant sensory infor-
mation. This can be seen as an indication that the
information-bearing features of the field echoes are
similar—or at least similarly positioned in time and
frequency—to those in the laboratory echoes. Further
circumstantial evidence regarding the nature of the
informative echo features can be derived from the
experiments that used different window lengths for
computing the echo spectrograms. The finding that
classification performance was virtually independent
of window length over a the entire range of values
tested (0.5–5 ms), demonstrates that the informative
echo features are accessible in the time domain and
the frequency domain, as well as in various mixtures
of the two.

9
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However, the informative features of the field
echoes were not quite as accessible as those of the
laboratory echoes for the classifiers that operated
on the neuromorphic echo representation derived
from a single amplitude threshold. For these clas-
sifiers, detection accuracy dropped from 95% on
the laboratory data [29] down to 81% in the field.
This decrease in performance could be addressed—at
least partially—by extending the neuromorphic echo
representation to multiple amplitude thresholds; this
resulted in a best accuracy of 92%.

With respect to understanding the biosonar sys-
tem of bats, the current findings demonstrate that bats
flying in outdoor environments have accurate and
reliable information regarding the presence of pas-
sageways that are much narrower than their biosonar
beams. This suggests that beamwidth may not nec-
essarily be a critical parameter for explaining the
navigational abilities of bats in natural vegetation.
However, the results of the current work can only
provide experimental evidence with regard to the sen-
sory information that bats—hypothetically—could
use for navigation in foliage. They do not allow us to
draw any conclusions as to if and how bats use this
information. These questions can only be addressed
with animal experiments that were entirely beyond
the scope of the current study. For the design of
autonomous drones that can operate in complex nat-
ural environments, it may hence also not be necessary
to focus on sensors with high angular resolution,
since obtaining at least passageway information does
not seem to depend on resolution (within the tested
range).

While passageway finding is an important com-
ponent of navigation [9], it is not the only ability
that is needed for successful navigation and goal
attainment of an autonomous system. Recent work
has demonstrated the presence of location-specific
information in biomimetic clutter echoes that could
be used to pinpoint a location on a large (kilometer)
scale [45, 46] as well as on small (meter) scale [47].
This location information could very well support
the constructions of maps, although this has yet to
be demonstrated. Combined with the passageway-
finding ability demonstrated in the current work,
echo-based location identification could make for a
complete navigation system that is not only capable
of avoiding obstacles but can also determine which
path to take to reach a destination within an area it
has mapped.

Future work on how bats and biomimetic systems
could use clutter echoes for navigation should be
extended to a wider range of natural habitats to survey
more of the variability in potentially informative
echo features that these environments produce. It
would also be worthwhile to study the abilities and
strategies that bats use in their habitats, for example
how the animals’ flight trajectories are aligned with

their respective microhabitats. Combined with fur-
ther insights into how bats represent the information
from their biosonar systems in three dimensions [48],
these findings could lead to novel bioinspired naviga-
tion systems that could provide a higher performance
at much lower data rates than the approaches that are
currently available to engineers in the field.
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