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ABSTRACT
Leaf wetness detection is one of the key technologies for preventing
plant diseases in agriculture. In this poster, we propose mmLeaf,
leveraging a commercial off-the-shelf millimeter-wave (mmWave)
radar to detect actual leaf wetness in diverse environments and
lighting conditions. mmLeaf captures mmWave signals reflected
by monitored leaves with a two-dimensional (2D) scanning system.
Then, we use a multiple-input multiple-output (MIMO) array and
synthetic aperture radar (SAR) to reconstruct the signal distribution
of different planes of the leaves. A deep learning model takes the
fused signal distribution as inputs to classify the leaf wetness. We
implementmmLeaf using a frequency-modulated continuous-wave
(FMCW) radar and evaluate its performance with a potted plant
indoors. By exploring the use of mmWave signals, mmLeaf deliv-
ers an end-to-end detection framework that achieves up to 90%
accuracy in classifying leaf wetness under different distances.
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1 INTRODUCTION
Leaf wetness brought by dew, precipitation, fog, or irrigation is 
a key parameter in agriculture, as leaf wetness duration (LWD) 
is inextricably linked to plant diseases. Specifically, free water on 
leaves provides a venue for phytopathogenic fungi and bacteria 
to grow and spread [1]. Once free water has been present on the 
leaf surface for a certain period at a suitable temperature, different 
pathogens (e.g., Venturia inaequalis) can survive. Empirical simula-
tion models take numerous agrometeorological variables as inputs
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Figure 1: Leaf wetness detection with mmLeaf

to estimate leaf wetness. For example, a leaf tends to be wet or dry
when the weather is heavily rainy or completely dry/windy. How-
ever, measuring leaf wetness becomes challenging facing abrupt
temperature changes, windless humid weather, various crop struc-
tures, and diverse leaf surface properties [2]. Therefore, fine-grained
leaf wetness detection is preferred for crop disease control.

Currently, camera-based methods and electronic leaf wetness
sensors (LWSs) are available to determine leaf wetness in real de-
ployments. Since water can change how a leaf reflects light, and
the temperature of wet leaves is different from dry leaves, infrared
or RGB cameras capture the leaf images, which are fed to deep
learning models for leaf wetness analysis [3]. However, camera-
based approaches suffer from environmental and lighting changes.
For example, RGB cameras do not work in darkness, and infrared
cameras work poorly in hot environments. On the other hand, elec-
tronic LWSs [4] are widely deployed in practice. With different
wetness levels on a sensor’s surface, the sensor obtains different
resistance or electrical impedance readings of the electronic cir-
cuits on its surface [4]. However, the sensor’s surface materials are
very different from those of a leaf’s surface. The detection results
only represent sensor wetness but not the actual wetness of the
leaf surface. Besides, commercial electronic LWSs with an average
price of approximately $160 per unit, are challenging for farmers
to afford and utilize effectively [5].

In this poster, we present mmLeaf, a versatile millimeter-wave
(mmWave) based sensing system for wetness detection on real
leaves in diverse environments. As illustrated in Figure 1, we use
a commercial off-the-shelf (COTS) mmWave radar to build a two-
dimensional (2D) scanning system,which emits frequency-modulated
continuous-wave (FMCW) signals and records the reflected signals
from the target leaves. Since the water on the leaves can influence
the reflected signals, we analyze these signals to infer the wetness
of the leaves. First, with the multiple-input multiple-output (MIMO)
antenna array and synthetic aperture radar (SAR), we use the range
migration algorithm [6] to reconstruct the fine-grained signal dis-
tribution images for different planes of the plant. Moreover, we use
segment fusion to combine signal distributions at different planes
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(a) mmWave radar (b) Potted plant. (c) Experiment scenario

Figure 2: mmLeaf implementation for detecting the leaf wet-
ness of a potted plant in indoor environment.

of the plant and deal with the depth information to achieve the
effect of data enhancement and output the fused reconstruction
results. Finally, we develop a deep learning model, which takes the
fused reconstruction results as input to classify leaf wetness.

2 SYSTEM DESIGN
mmLeaf consists of three modules as follows:
MIMO-SAR Sensing.We design a MIMO-SAR sampling scheme to
sense the target plants. Specifically, we use a mmWave radar with
multiple transmitters and receivers to transmit FMCW signals and
record the reflected signals. Moreover, to achieve a larger antenna
aperture of the MIMO array, we use SAR scanning, in which the
mmWave radar is moving along a specific trajectory on a 2-axis
slide rail.
MIMO-SAR Imaging. We pre-process the reflected signals and
use the range migration algorithm [6] to reconstruct MIMO-SAR
near-field leaf images. We generate several images in different at
different depths at a time. Each image contains the distribution
of the reflected signals by the reflection plane of the plant at the
corresponding depth within a specific area synthesized by the SAR
aperture to reduce interferences caused by proximity plants.
Leaf Wetness Detection. We consider the overall effect of leaf
wetness on the signal distribution and combine the imaging infor-
mation of the whole plant at different depths. The output of depth
information fusion is the input of a deep learning model, which has
the structure of VGG-16 [7] combined with a classifier to detect
whether the leaves are wet or not.

3 SYSTEM IMPLEMENTATION
Prototype.We implement a prototype with a TI IWR1642mmWave
radar operating at 77 to 81GHz frequency band and aDCA 1000EVM
for collecting raw mmWave reflected signals. The core chip of the
mmWave board only costs $40. The radar is equipped with a two-
axis mechanical scanner as shown in Figure 2. The SAR scanning
has a horizontal range of 200mm and a vertical range of 100mm.
The time required to complete one SAR scanning is approximately
six minutes. It is a tradeoff between scanning time and image infor-
mativeness.
Dataset. We have collected 120 pairs of plant data corresponding
to dry and wet placed at different distances from the radar and
with different poses, including the placement distances of 200 mm,
300 mm, and 400 mm. The maximum sensing distance is determined
by the plant shape and leaf density. Figure 3 shows five generated
MIMO-SAR images at different depths. The textures of the images
indicate the properties (e.g., wetness, shape) of the plant’s reflection
planes at those depths.
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Figure 3: MIMO-SAR images of a potted plant at different
depths.
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Figure 4: The overall accuracy of mmLeaf and performance
at different placement distances.

4 EVALUATION
We use cross-validation to randomly split the data into training
and test sets in a four-to-one ratio, and evaluate the accuracy of
our model on the test set. As shown in Figure 4, the overall average
accuracy is about 88%, and the highest overall accuracy is 93%.
In addition, when the placement distance between the plant and
radar is 200 mm, the average accuracy is the lowest, which may be
due to insufficient received signal due to the specular reflection at
shorter distances. Besides, the placement distance of plants can be
increased by enlarging the array aperture.

5 CONCLUSION
This poster presents mmLeaf, a versatile mmWave leaf wetness de-
tection system that is light-insensitive, reflecting actual leaf wetness,
and non-destructive. Our results show thatmmLeaf can achieve up
to 90% mean accuracy in different placement distances. With our
indoor experiments, we believe that mmLeaf can work in general
by training the model with a more comprehensive dataset.
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