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Abstract

Accurate leaf wetness detection is essential to understand-
ing plant health and growth conditions. The mmWave radar,
with its sensitivity to subtle changes, is well-suited for leaf
wetness detection. Existing mmWave-based approaches uti-
lize the Synthetic Aperture Radar (SAR) algorithm to gen-
erate image-like inputs and rely on multi-modality fusion
with an RGB camera to classify leaf wetness. However, the
lack of understanding of SAR-based mmWave imaging limits
its accuracy in various environments. This paper presents
Proteus, a novel way of understanding mmWave SAR imag-
ing. We design a noise reduction algorithm to reduce speckle
noise and improve image clarity for SAR-based mmWave
imaging. Then, we incorporate phase angle data to enrich
SAR texture information to capture high-resolution surface
details, increasing informative features for precise wetness
assessment in complex plant structures. Additionally, we in-
troduce a cross-modality Teacher-Student network, using an
RGB-based teacher model to guide the mmWave SAR-based
student model for feature extraction. This network trans-
fers the explicit knowledge in the RGB image domain to the
mmWave image domain. We use commercial-off-the-shelf
mmWave radar to prototype Proteus. The evaluation results
show that Proteus achieves up to 96.3% accuracy across var-
ied environmental scenarios, outperforming state-of-the-art
methods.
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1 INTRODUCTION

The rising frequency and severity of plant disease outbreaks
threaten global food security, agricultural productivity, and
biodiversity [15, 53, 54, 61, 70]. These outbreaks, driven by
pathogens such as fungi, bacteria, and viruses, lead to sub-
stantial yield losses and ecological damage, costing an es-
timated 220 billion annually [54, 61]. Precision agriculture
has become essential to improve productivity while reduc-
ing environmental impact [3, 5, 16, 57]. A key component is
monitoring environmental factors that foster disease. Leaf
Wetness Duration (LWD), the time water remains on leaf
surfaces [43, 55] is crucial for fungal and bacterial pathogens
growth [28, 75]. Therefore, accurate LWD detection is vital
for managing crop diseases and enabling timely interven-
tions in crops like strawberry [30, 39], cucumber [22], and
sweet cherry [65].

Researchers have introduced various modalities to im-
prove LWD detection systems, including leaf wetness sen-
sors (LWS) [20, 46, 67], RGB/infrared cameras [30, 76], and
Terahertz [31]. However, these methods still struggle with
low accuracy in various environments and complex deploy-
ment. Current state-of-the-art systems [18, 36] for leaf wet-
ness detection primarily utilize mmWave radar imaging to
build an orthogonal information channel. However, none
of the existing systems have comprehensively utilized and
analyzed the mmWave-based features for reliable wetness
detection. mmLeaf [18] employs a Synthetic Aperture Radar
(SAR)-based mmWave imaging approach [80] to obtain de-
tailed plant images, but a lack of understanding of the SAR
image feature leads to struggles in achieving high detec-
tion accuracy. Hydra [36] efficiently extracts the focus on
multi-modality features combined with the RGB camera and
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mmWave SAR image in diverse environments. Adonis [35]
uses mmWave for leaf wetness level detection but primarily
focuses on comparing different wetness levels rather than
directly extracting wetness features. Three key limitations
are illustrated as follows:

Intense Noise in mmWave Radar Data Existing SAR-
based mmWave imaging inherently adds speckle noise due
to the coherent nature of radar waves. The multiple scattered
signals within a resolution cell interfere with each other [37],
particularly in challenging environments (e.g., irregular plant
3D structure, leaf vibration, moderated wind). If speckle noise
appears in the water drop areas, the signal-to-noise ratio
(SNR) will be reduced. On the other hand, the speckle noise in
random areas may create fake water drops. Noise will mislead
the machine learning model for classification. Therefore, the
accuracy will be degraded.

Limited Wetness Feature Spaces The existing mmWave-
based leaf wetness detection model relies heavily on pixel
intensity patterns in the SAR image to capture the wet leaf
texture. Ideally, the water drop will reflect more signals than
the dry leaf areas, producing a high pixel intensity. How-
ever, the pixel intensity of the SAR image indicates relative
intensity, which is not a stable indicator of wetness. Many
other factors, such as leaf surface roughness, leaf density,
relative position, and leaf size, can significantly influence
different plants and environments. These variations make it
challenging to build a uniform feature space to consistently
detect wetness in general environments, as low-dimensional
pixel intensity changes may reflect surface characteristics
unrelated to wetness. Thus, relying solely on pixel intensity
may result in inaccurate leaf wetness identification due to
variations in crops and environments.

Constrained Feature Extraction and Explainability. Us-
ing mmWave-based SAR imaging can produce apparent fea-
tures only if non-overleaped leaves appear in a radar’s field-
of-view (FoV) and the radar directly faces the leaf. The reflec-
tion of water drops can be maximized, keeping a high SNR.
However, physical mmWave radar deployment constraints
in natural environments introduce a significant challenge
with a good relative position. In addition, complex plant
structures will bring multi-path noises to blur the pixel in-
tensity. The two factors above make it difficult to obtain high
SNR features from SAR images for leaf wetness detection in
practice. The existing machine learning model lacks an ex-
planation for efficiently extracting the low-SNR leaf wetness
features to guarantee classification accuracy in real-world
applications.

To address these limitations, this paper introduces Proteus
with a novel approach to mmWave SAR image analysis by
borrowing the knowledge from the RGB image domain. The
method for Proteus involves a feature-enhanced mmWave
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imaging system for accurate leaf wetness detection. We gen-
erate high-SNR images, construct informative and explain-
able features to enhance the mmWave-based image, and
use a machine-based method to understand the features. To
enable these, our techniques include developing a denois-
ing method, cooperating with new texture information, and
leveraging the well-trained feature space of another modality
to teach mmWave imaging, known as cross-modal knowl-
edge transfer. By doing so, Proteus improves the feature of
the mmWave image and uses machine learning-based meth-
ods to understand the mmWave SAR-based imaging deep.
Specifically, Proteus includes three key components:

Speckle Noise Reduction. We aim to reduce speckle in-
terference while preserving critical leaf texture features in
a mmWave image. We observe that the speckle noise is a
granular, salt-and-pepper-like texture. The high-frequency
pattern challenges the interpretation of object contours and
textures. We use a computer vision-based algorithm to mit-
igate the speckle pixels with their surrounding pixels. The
image clarity is enhanced in this way, allowing the system
to focus on essential wetness-related features.

Enhanced Image Informativeness with Phase Angle.
In addition to the intensity patterns on existing mmWave
images, we adopt other orthogonal features to enhance the
informativeness of the images. The phase angle indicates
the angular displacement between transmitted and received
signals. The water on a leaf changes the received phase angle
by introducing additional phase shifts due to the altered
dielectric properties [4, 9, 32]. We incorporate phase angle
data into SAR imaging, which enriches the captured surface
texture and reveals fine details. This enhancement provides
a more comprehensive view of leaf wetness distribution,
leveraging the extra information to detect minute wetness
changes accurately.

Cross-Modal Teacher-Student Network. We aim to con-
struct an augmented feature space that enables machine
learning models to capture wet pixels accurately. Existing
work [36] has shown that RGB images can capture apparent
wetness features with good lighting conditions, constructing
an excellent feature space for image recognition models. We
aim to transfer the knowledge from the RGB-image feature
space to our mmWave-image feature space. To further im-
prove feature extraction, we adopt a cross-modality Teacher-
Student network that leverages RGB images for guidance.
The RGB-based teacher model is pre-trained on apparent wet-
ness features in our setup. It guides the SAR-based student
model in recognizing and learning subtle wetness patterns.
Combined with depth fusion, it enables the comprehensive
extraction of plant features within a 3D structure. We utilize
LSTM, which efficiently captures temporal dependencies.
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This cross-modality approach enhances the model’s abil-
ity to detect wetness with higher accuracy and enriches its
adaptability across different plants.

We implement Proteus using commercial off-the-shelf
hardware components. In the evaluation, we consider var-
ious types, sizes, densities, and environments, including
indoor and outdoor. The extensive evaluation of Proteus
demonstrates its excellent performance in various settings.
It achieves 96.3% accuracy in distinguishing leaf wetness or
dryness. It achieves less than 5 minutes of error in LWD
detection, which outperforms the state-of-the-art mmWave-
based system by about 10.77% accuracy. In addition, with
the enhanced mmWave imaging, the accuracy of the multi-
modality leaf wetness detection system can be improved by
about 3.97%.

The contributions can be summarized as follows:

o We resolve the challenging problem of interpreting and
enhancing SAR-based mmWave images for accurate
leaf wetness detection. With cross-modality knowl-
edge transfer from an RGB camera, we significantly
enhance the informativeness of the feature for leaf
wetness classification.

e We develop targeted techniques to enhance mmWave
images. Firstly, we designed a noise reduction method
to remove speckle noises on a SAR image. Secondly,
phase angle features are integrated to enhance the
SAR image with rich texture details. Finally, we design
an adaptive Teacher-Student framework to transfer
the knowledge from the RGB to the mmWave image
domain.

o The system has been prototyped and extensively tested
on various plant types under diverse environmental
conditions, achieving 96.3% accuracy on wetness de-
tection and less than 5 minutes error on leaf wetness
duration detection, which outperforms the state-of-
the-art.

2 PRELIMINARY
2.1 Definition of Leaf Wetness

Leaf wetness duration refers to the period a leaf remains wet,
which is crucial for plant disease management [55]. Accurate
LWD detection depends on identifying leaf wetness, which
indicates the presence of water on the leaf surface [44, 68].
Based on the ground truth detection from the state-of-the-art
leaf wetness section system Hydra [36], specified in Section
4.2. We set up a calibrated moisture meter, which is used
for surface moisture detection to determine leaf wetness.
The meter is calibrated in a dry, ventilated environment to
set a baseline threshold for dryness. If the reading exceeds
this threshold, the leaf is classified as wet; otherwise, it is
considered dry.
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2.2 mmWave SAR Imaging

The mmWave refers to electromagnetic waves with wave-
lengths in the millimeter range, typically between 1 and 10
millimeters. This short wavelength makes the radar highly
sensitive to minor surface texture changes, allowing it to
detect subtle details accurately, which is essential for iden-
tifying leaf wetness. The mmWave’s sensitivity to material
properties makes it particularly effective for leaf wetness de-
tection. Different materials exhibit distinct permittivity val-
ues, which impact how they reflect mmWave signals. Since
water has a high permittivity compared to dry leaf surfaces,
wet leaves reflect mmWave signals differently. The differ-
ence makes it possible to distinguish wet leaves from dry
ones [18, 36].

SAR is a remote sensing technology that leverages the
movement of the radar system to generate high-resolution
images by simulating a larger antenna aperture. This tech-
nique enables mmWave radar to capture the fine details
of surface structures, providing the potential to detect leaf
wetness via mmWave images. We conduct mmWave SAR
experiments to investigate leaf wetness detection further and
observe wetness features to demonstrate several limitations.
We develop a 2-axis mechanical testbed for SAR imaging and
placed an RGB camera at the center of the scanning area to
capture visual information. The radar signals are extracted
from a stationary leaf and plant positioned 200 mm from the
radar.

Pixel Noises in SAR: In Figure 1, we compare the imaging
results of a plastic "A" target captured with a standard camera
and SAR. The plastic material, chosen for its low reflectiv-
ity and rough surface texture, mimics the characteristics
of a leaf surface. The camera image in Figure 1a captures
the target’s shape and texture with clarity, while the SAR
image in Figure 1b is heavily impacted by speckle noise in
the areas of shape "A". Noise arises from the scattering of
coherent radar waves, which interfere constructively and

(a) RGB Image

(b) SAR Image

Figure 1: Speckle noise shown in SAR imaging.
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(a) Leaf RGB Image

(b) Leaf SAR Image
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(c) Signal intensity distribution

Figure 2: In simple leaf structures, wetness features are visually detectable in SAR imaging; however, the intensity
of these features varies significantly between different types of leaves.

(a) Plant RGB Image

(b) Plant SAR Image

Figure 3: Limited wetness feature in complex structure.

destructively [40, 84]. The salt-and-pepper noise makes dis-
tinguishing precise contours and extracting texture details
from the image challenging. It emphasizes the need for ef-
fective noise reduction in SAR-based leaf wetness detection.

Limitation of Pixel Intensity Features: We conduct exper-
iments using leaves with simple droplets and no overlapping.
Figure 2a shows the RGB images, where clear droplets circled
in red are easily detectable. Figure 2b displays SAR images
with distinct droplet features in the corresponding areas.
That indicates SAR imaging can effectively capture wetness
features. However, the intensity is a relative value among
all pixels. To further analyze these features, we collect 12
different types of leaves with variations in surface roughness.
We generate an image for each leaf type without overlapping
leaves and apply a few droplets. The experiment repeats 10
times for each leaf type. We identify the droplet areas in SAR
images based on their distinct features and the corresponding
droplet area of RGB images. We extract the intensity feature
in the areas. The boxplot in Figure 2c shows a significant
variance in intensity across different leaf types. It reveals
that intensity is inconsistent, which limits the reliability of
wetness features across groups.

Blurred Image under Complex 3D Plant Structure: We
extend our experiments to analyze wetness detection on en-
tire plants. As shown in Figure 3a, distinct water features,
circled in red, are visible in the RGB images. The SAR image
is captured at 210 mm from the testbed shown in Figure 3b.
Compared with Figure 2b for the wetness feature in simple
leaf structures, it is hard to directly detect the wetness fea-
ture in complex plants. Existing methods also fail to address
this challenge effectively. mmLeaf [18], which relies solely
on SAR data, lacks accuracy in 3D structures. Hydra [36]
partially addresses this by fusion SAR and RGB images to
enhance feature capture. Currently, no approach efficiently
captures wetness features from SAR imaging in intricate 3D
environments.

Motivation: The limitations above motivate us to rethink
the nature of the results of combining the SAR algorithm
and mmWave radar in leaf wetness detection. We observe
that RGB images under good lighting conditions have a more
explainable feature domain, providing high SNR for leaf wet-
ness detection. We intend to interpret the features and en-
hance the informativeness of mmWave images by borrowing
the perspective of RGB images, thus enhancing the accuracy
of mmWave-based leaf wetness detection.

3 Proteus Design

We present Proteus an advanced mmWave SAR imaging
system for leaf wetness detection shown in Figure 4. We
want to introduce the principle of SAR imaging (§3.1), SAR
imaging noise reduction (§3.2), Phase Angle enhanced rich
texture SAR image (§3.3), Cross-modality Teacher-Student
Network Feature Extraction (§3.4), and Depth Fusion (§3.5).

3.1 SAR Imaging

In this section, we present our imaging system based on SAR
technology. This system emits signals at regular intervals



Proteus: Enhanced mmWave Leaf Wetness Detection with Cross-Modality Knowledge Transfer

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

ﬁ%oteus System Design

Teacher-Student \ _
Feature Extraction I Depth

~

Fusion
~Hl

e

— J

Figure 4: Proteus Model Overview: The Proteus model consists of three main components: Noise Reduction, Phase
Angle-Enhanced SAR Imaging, and a Teacher-Student Network for Feature Extraction.

to capture images of relatively stationary targets. A key ad-
vantage of SAR is its ability to increase the aperture size
for higher-resolution images. Combined with FMCW, this
approach offers a cost-effective solution for near-field imag-
ing [41, 63, 80, 81]. Our approach is based on the testbed and
algorithm produced in [36, 81].
We use the FMCW signal expressed as a linear function
of time:
m(t) = cos[27(fot + 0.5Kt?)], (1)

where fj is the carrier frequency at t = 0, and K = B/T is
the frequency modulation slope, determined by the sweep
bandwidth B and chirp duration T.

Upon receiving the backscattered signal, the radar system
applies a dechirping process by mixing the received signal
with its in-phase s;(¢) and quadrature sp(¢) components,
resulting in a complex beat signal:

S(t) — S[(t) —jSQ(t) — O_e—j27r(ng+KTt—0.5KTZ), (2)

where 7 represents the round-trip delay, and o accounts for
the target’s reflectivity and amplitude decay.y.

For spatial representation in the wave number domain,
the received signal can be simplified as:

s(x’,yr, yr. k) = // p(x,y, z)e FRT e=IRRR g gy dz,  (3)

where Rt and Ry are the distances from the transmitter and
receiver to the scatter point, respectively, in the scanning
system’s Cartesian coordinate system. p(x, y, z) denotes the
scattering amplitude at the spatial point (x,y, z). It repre-
sents the target’s reflectivity properties, which determine
the strength of the backscattered radar signal received from
each location in the scanning area.

The phase compensation is applied to convert the multi-
static to monostatic equivalent, represented as:

aﬂw=ﬂ}mwwmww ()

where R represents the distance to the scatter point, allowing
for 2D image extraction Weyl’s representation theorem [77]
approximates spherical waves as plane waves, enabling the
backscatter data to be expressed as:

Sk, ky) = Plky, ky)e/®=%. (5)

where k,is the wave number in the z-direction, related to the
wavelength and angle of incidence. Zjis the reference dis-
tance at which the backscatter data is recorded. The inverse
Fourier transform of S| (kx, ky) provides the reconstructed 2D
image:

p(x,y) = IFT "ok [ TS (ko k). )

Adjusting the x range allows for flexibility in balancing the
field-of-view and resolution, enabling detailed imaging or
faster scans based on specific needs.

3.2 Noise Reduction

Noise reduction is a critical step in mmWave SAR imaging
due to the inherent presence of speckle noise caused by the
coherent nature of the radar signal [56, 62]. Speckle noise
arises from the random interference of multiple scatterers
within a resolution cell, leading to granular, high-frequency
noise in the image [2]. This noise reduces the clarity and qual-
ity of the SAR image [47, 74]. Reducing noise is essential to
enhancing the SNR, improving image fidelity, and ensuring
more accurate feature extraction, particularly for complex
tasks like leaf wetness detection. Previous work [1, 8] pri-
marily focuses on visual-based speckle noise reduction. We
aim to develop a new denoising technique that enhances
model performance in downstream tasks like classification
and texture analysis [72].

To address this, we apply a multi-step Computer Vision
noise reduction approach that combines several filtering
techniques to minimize noise while preserving critical details
of the SAR image. The noise reduction process includes
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(a) Original SAR Image

(b) Denoised SAR Image

Figure 5: Comparison of Noise Reduction result.

Gaussian blur, median blur, and Non-Local Means (NLM)
noise reduction. Each step reduces different types of noise
while preserving essential features in the SAR image.

The first step involves applying a Gaussian blur to the
SAR image. Gaussian blur smooths the image by averaging
pixel values based on a Gaussian distribution. It can reduce
high-frequency noise while maintaining the overall structure
of the image. The Gaussian function for blurring can be
expressed as:

xz-%-y2

e 27 | (7)

Glxy) = 2702

where (x,y) are the pixel coordinates, and o represents
the standard deviation of the Gaussian distribution, control-
ling the extent of the blurring. In our implementation, we
apply a 3 X 3 kernel, which provides a balance between noise
reduction and feature preservation:

After Gaussian blurring, we apply a median filter. It effec-
tively removes salt-and-pepper noise while preserving edges,
which is crucial for maintaining the sharpness of boundaries
in SAR images [40]. In this step, each pixel is replaced by
the median value of the surrounding pixels in a 3x3 ker-
nel, which helps to remove isolated noise while keeping the
image’s structural integrity intact.

Finally, we apply Non-Local Means (NLM) noise reduction.
NLM works by averaging similar patches across the image,
preserving the overall structure and fine details [10, 21]. The
NLM noise reduction function is expressed as:

NL(o())) = )" w(i, j)o()), (®)
jel
where v(i) is the pixel value at location i, w(i, j) is the
similarity weight between pixels i and j, and v(j) is the
value of pixel j in the search window. The weights w(i, j)
are calculated as:

_|v<i>—v(j>|2), o

wii ) = 5 e -0
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where Z(i) is a normalization factor and h is the filtering
parameter that controls the degree of smoothing.

Our process effectively reduces speckle noise in SAR im-
ages while preserving crucial leaf texture information by
combining Gaussian blur, median filter, and NLM noise re-
duction techniques. The comparison result is shown in Figure
5 This allows for more reliable detection of leaf wetness fea-
tures, leading to improved system performance and more
precise environmental sensing.

3.3 Phase Angle Extraction

While SAR images primarily focus on signal intensity, they
can miss subtle textural differences. The phase angle pro-
vides essential information about the variation in surface
texture and roughness variations [4, 9, 32], which can change
depending on the leaf wetness. The change occurs due to
the dielectric constant and conductivity of wet leaves, which
affect the propagation speed of mmWave signals, causing
shifts in the phase angle [69]. This integration enables a
richer feature with amplitude and phase information for
better wetness feature detection.

We begin with the complex beat signal used in Eq. 2 to
extract the phase angle from the SAR signal. The in-phase
component s7(t) and quadrature component sg(t) are used
to compute the phase angle ¢ (). The phase angle is derived

as follows: "
B _1[Solt
$(t) = tan™! (_Sj(t) ) .

In the wavenumber domain, after compensating for phase
shifts, the complex signal S (kx, ky) contains both amplitude
and phase information. The phase angle at any spatial point
(kx, ky) can be expressed as:

¢ (k. ky) =arg (§(sz ky)) > (11)

where arg(-) represents the phase of the complex signal. This
derivation allows us to extract phase information, which is
critical for improving the leaf texture analysis in SAR imag-
ing. The phase angle captures variations in surface properties
to alter wave propagation, enhancing the detection of wet-
ness features on leaves.

After deriving the phase angle ¢(k, k,) from the SAR
signal, we enhance the final SAR image by multiplying the
phase angle matrix with the SAR amplitude matrix. Multi-
plying intensity and phase information effectively integrates
complementary features while maintaining the inherent rela-
tionships between both features. Let p(ky, k) represent the
amplitude of the SAR signal at each point calculated at Eq. 6,
and ¢ (ky, k) be the phase angle at the same point calculate
at Eq. 11. The final phase-enhanced SAR image I(kx, k) is
obtained by:

I(kx, ky) = p(kx, ky) - cos(P(kx. ky)), (12)

(10)
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Figure 6: Teacher-Student network structure with RGB-guided SAR wetness detection and Depth Fusion module.

where the phase angle adjusts the amplitude values based
on the surface characteristics.

This final result incorporates amplitude and phase infor-
mation, enhancing the SAR image’s ability to detect fine
surface wetness features by leveraging the phase angle for
improved texture representation.

3.4 Cross-Modal Teacher-Student Network

In the previous work, no model could efficiently extract the
leaf wetness features from the SAR image. As observed in
Section 2.2, SAR imaging with mmWave radar can easily
extract the wetness feature from simple leaf structures but
struggles with complicated plants. In previous work [36],
RGB cameras effectively captured leaf wetness features but
struggled in dynamic environments due to lighting depen-
dency. RGB imaging serves as a teacher model to overcome
this, guiding the SAR-based model to extract wetness fea-
tures from mmWave radar more effectively. Our system
implements a Teacher-Student Network for feature extrac-
tion to enhance the SAR model’s ability to detect leaf wetness,
as shown in Figure 6. The teacher model, trained on RGB
images, transfers its learned feature representations to the
Student model, which processes SAR images. This guidance
improves the SAR model’s feature extraction precision and
minimizes model size. The student network, designed with
only two residual layers, is lightweight and optimized for
deployment on edge devices, where computational resources
are limited. This reduced complexity enables more efficient
and practical implementation in real-time sensing scenarios.

3.4.1 Model Architecture. In the teacher model, we use the
ResNet-18 network [23] for feature extraction. The excep-
tional performance of ResNet is excellent in leaf wetness

detection [36]. We design a lightweight architecture for the
student model combined with the residual block to enable
efficient SAR feature extraction. Each residual block is fol-
lowed by a dropout layer to prevent over-fitting and improve
generalization. Residual layers employ shortcut connections
that bypass one layer, enabling the model to learn residual
mappings instead of direct mappings [24]. This structure
maintains gradient flow across layers, supporting efficient
training and helping the student model capture subtle fea-
tures in SAR images, even when these features are less pro-
nounced.

To further streamline the model, we apply a Global Av-
erage Pooling (GAP) layer after the residual layers, which
reduces the spatial dimensions and produces a compact fea-
ture vector [34]. GAP reduces model complexity, optimizing
it for low-power deployment while maintaining accuracy.
These outputs are Depth Fusion and classification stages.
This depth weight design ensures that the student model can
operate effectively on edge devices with limited computa-
tional resources and power. The network design is suitable
for real-time, in-field agricultural applications.

3.4.2 Training Processing. We use a pre-trained teacher model
for RGB images to guide the student model’s feature extrac-
tion on SAR images. During training, a temporary classifier
is attached to the SAR feature extraction layers to serve as a
guidance mechanism, helping the student model align with
the teacher network’s learned representations. This tempo-
rary classifier is removed after training, leaving a streamlined
feature extraction process in the final student model.

We use a combined loss function composed of knowledge
distillation loss and binary cross-entropy loss to train the
student model effectively. Our knowledge distillation loss
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model uses cosine similarity to measure the alignment be-
tween feature vectors extracted by the Teacher and Student
models.

The cosine similarity for knowledge distillation focuses
on the directional alignment of feature vectors rather than
their magnitude. This is particularly useful in knowledge
transfer between different modalities[6, 27]. It encourages
the Student model to capture the teacher’s essential patterns
and relational structure, regardless of scale differences. After
feature extraction, both models pass their outputs through a
GAP layer, which reduces each feature map to a 1D vector
of consistent size. The Teacher’s feature vector fieacher and
the Student’s feature vector fident is calculated as follows:

Lid = ﬁeacher 'f;tudent

- ”ﬁeacher” ”f;tudent ”
Zﬁil teacher[i] : fstudent[i]

VI fracher [1D? - AN Frudene [1])2

For the Binary Cross-Entropy loss measures of the clas-
sification accuracy of the Student model by comparing its
predictions ypreq to the true labels yirue. The binary cross-
entropy loss Lye is defined as:

Liee = — Z (ytrue log(ypred) + (1 = Ytrue) log(1 - ypred)) .

The total loss function, which combines both the distilla-
tion loss and the binary cross-entropy loss, is given by:

Total Loss = a - Lpee + (1 — ) - (1 — Lid),

where « is a weighting factor that balances the importance of
classification accuracy and feature alignment. By employing
this Teacher-Student architecture, our system capitalizes
on the solid feature extraction capability of the RGB-based
Teacher model. This enables the SAR-based Student model to
enhance its precision in detecting leaf wetness features while
remaining lightweight and efficient for edge deployment.

3.5 Depth Fusion

The mmWave radar with FMCW chirp captures precise depth
information. Depth is the spatial distance from the radar-
specific target cross-sections. By gathering depth data across
multiple cross-sections, the radar supports accurate 3D re-
construction, providing a comprehensive view of the plant’s
internal layout and structure.

A major challenge in plant analysis is the complexity of
plant structures, where overlapping or partially obscured
leaves hinder visibility. Traditional line-of-sight methods
fail to capture hidden details. While 3D models provide a
more detailed representation that can improve analysis accu-
racy, they require effective feature extraction across multiple
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depth levels to capture relevant information [26, 38]. We
integrate a Long Short-Term Memory (LSTM) network to
address this. LSTM networks were initially developed for
sequential data in natural language processing. They are
adept at identifying patterns across time steps due to their
ability to retain long-term dependencies [36, 82]. Compared
to Transformer-based models, LSTM is more lightweight
while effectively extracting sequential information. In our
approach, the LSTM processes sequential cross-sectional
data from different depths, learning relationships between
features across these layers. Following the LSTM block, a
classifier categorizes the leaf wetness status. We train the
model using a binary cross-entropy loss specific in Section
3.4.2, which evaluates the classification accuracy against the
ground truth labels, ensuring the network’s work’s effective-
ness in recognizing wetness within complex plant structures.

4 IMPLEMENTATION
4.1 System Setup

We develop a prototype of Proteus, shown in Figure 7, in-
corporating a SAR imaging system with a two-axis mechan-
ical scanner and a mmWave radar for data collection. The
scanner, which has a horizontal range of 150mm and a verti-
cal range of 100mm, moves 11.94mm/s to match the target
plant’s synthesis aperture size and dimensions. For large-
scale farm applications, as referenced in [36], our prototype
can be adapted for railway-based sampling of dense plant
areas or deployed on drones for efficient field-wide scan-
ning. The synthetic aperture radar needs transmitters and
receivers to be horizontally aligned, which we apply with
Texas Instruments (TI) IWR1642 [66] shown in Figure 7a. We
utilize a DCA 1000EVM [29] to facilitate initial signal collec-
tion and processing. We set it to send 500 frames per second,
and the two transmitting antennas alternately emit one chirp
signal in each frame. Each chirp signal consists of 256 sam-
pling points, and its frequency will increase from f; = 77GHz
to fr = 80.99GHz with the bandwidth B = 3.99GHz and fre-
quency slope k = 70.295MHz/us. As shown in Figure 7b, we
also include a camera imaging component for training the
cross-modal teacher-student model with Azure Kinect [42].
We use the method mentioned in Hydra [36] to calibrate
both modalities to maximize the shared features. In both
indoor and outdoor experiments shown in Figure 7c and 7d,
plants are imaged at 200-500 mm from the mmWave radar
during data collection. For each mmWave imaging process,
to capture the 3D structure of the plants, we generate multi-
ple images at specific depths from the closest point to its 300
mm behind at a 10 mm depth interval, ensuring thorough
coverage.
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Figure 7: Proteus comprises a mmWave radar, a two-axis scan testbed, and an RGB camera for training.
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Figure 8: Moisture Meter for ground truth collection.

4.2 Groundtruth Collection

We adopt a ground truth collection method from Hydra [36],
using a commercial moisture meter from General Tools [19]
to identify leaf wetness. This device functions by measuring
the electrical resistance between two pins, as illustrated in
Figure 8. We gently tap the meter’s pins onto the leaf surface
to measure the electrical resistance that reflects moisture
content. Higher resistance indicates increased moisture lev-
els. Firstly, we record a meter’s reading at room temperature
when leaves are completely dry in a well-ventilated indoor
environment. We will use the reading as the dryness baseline.
For future detection, a reading above this threshold indicates
the leaf is wet, and a reading below the threshold indicates
the leaf is dry.

4.3 Data Collection

4.3.1 Leaf Wetness Detection. Our indoor experiment lasted
eight months, during which we collected data from seven
diverse plant species with leaf size and orientation varia-
tions. Over time, these plants displayed different growth
patterns, spacing, and distribution, enhancing the diversity
of our dataset. To test Proteus in practical environments,
we also conducted in-situ experiments on two fields total-
ing 3.67 acres, planted with soybeans and corn. These field
experiments were conducted under various conditions, in-
cluding different times of day and weather conditions, such
as sunny, windy, and post-rain. For the wind scenario, we

focus mainly on mild wind conditions. Based on [28, 75], leaf
wetness leading to disease typically requires a duration of
wetness that often lasts several hours. Under strong wind
conditions, wetness evaporates quickly, reducing the likeli-
hood of disease development. Other environmental factors,
such as temperature and humidity, will have a trivial effect
on our system. Humidity-induced signal attenuation is sig-
nificant over long distances [33], but our focus on near-field
imaging, ranging around 200 — 500mm, minimizes this ef-
fect. Regarding temperature, the growing season typically
experiences temperatures above 28°F/—2°C [45], which falls
within the operational range of our radar [66], ensuring reli-
able performance. We generate a dataset of approximately
724 groups: 536 from indoor environments and 138 from
dynamic field conditions. This dataset maximizes the range
of wetness levels, allowing Proteus to effectively distinguish
wetness features across conditions.

4.3.2  Leaf Wetness Duration Detection. To monitor leaf wet-
ness duration with Proteus, we track plants transitioning
from saturated wetness to dry states indoors, capturing the
drying process at 6 to 12 intervals, each interval being 5 min-
utes. Our data included 30 groups of measurements across
different plants and environmental conditions, highlighting
the diversity of wetness features on leaf surfaces.

4.4 Baseline

Firstly, we used the commercial LWS PHYTOS 31 [20], the
most popular farm application, to monitor leaf wetness. How-
ever, we encountered challenges due to the sensor’s metal
components, which increased signal reflection and poten-
tially affected data quality for the mmWave system. Since
the signal reflection from the LWS will pollute our mmWave
images, we place the LWS on a plant of a similar size in
the same environment, guaranteeing the same leaf wetness
levels. We distributed four LWSs evenly across the plant to
capture comprehensive leaf wetness data, providing thor-
ough coverage. We also incorporate methods with mmWave-
based systems, including the mmLeaf [18] and Hydra [36]
systems and camera-based system [48]. For all the systems,
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Figure 9: Performance of leaf wetness detection.

we followed the procedures to align our scanning and mod-
eling with established practices, ensuring a comprehensive
approach to wetness detection across different systems.

4.5 Training Setup

We utilize an NVIDIA RTX 8000 GPU for our training setup
to handle both the training and validation processes. The
model is trained over 500 epochs with a batch size of 128.
The network uses the Adam optimizer with a learning rate of
5e-5. We split the dataset during training, with 80% allocated
for training and 20% for validation. Early stopping is also
implemented to prevent overfitting, monitoring validation
loss with a patience level of 10 epochs. For robust model eval-
uation, we apply 5-fold cross-validation iterated ten times
across diverse datasets.

5 EVALUATION
5.1 Overall Performance

5.1.1 Leaf Wetness Detection. In this part, we evaluate Pro-
teus’s ability to distinguish between dry and wet leaves over
our leaf wetness detection dataset, which captures indoor
and real-field conditions with various lighting and environ-
mental factors. The results are shown in Figure 9a. We can see
that Proteus achieves the highest accuracy at 96.3% + 1.62%,
outperforming all baseline models: Hydra achieves the accu-
racy 93.5% =+ 1.87%, mmLeaf for 85.53% + 1.54%, camera-only
for 90.53% + 2.72%, and LWS for 70.6% + 4.79%. Compared to
the state-of-the-art mmWave-based system mmLeaf, Proteus
improves the accuracy by 10.77% and improves the accuracy
by 2.8% in compare with Hydra. The result demonstrates Pro-
teus’s robust and accurate ability for leaf wetness detection.

5.1.2 Leaf Wetness Duration. In this part, we evaluate leaf
wetness duration by monitoring the plant’s drying process
and recording the error of leaf wetness duration over our
indoor leaf wetness duration dataset. The results are shown
in Figure 9b. Proteus achieve high precision with LWD er-
ror consistently within 5 minutes. Compared to the others,
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Figure 10: Enhance SAR with Noise Reduction (NR),
Phase Angle (PA), and feature extraction models.

Hydra records 22 instances within 5 minutes and 8 between
5 and 10 minutes. mmLeaf has 18 within 5 minutes, 5 in the
5-10 minute range, 5 in the 10-15 minute range, and 2 over
15 minutes. The camera method shows 12 instances within
5 minutes, 6 within 5-10 minutes, 4 within 10—15 minutes,
and 2 above 15 minutes. LWS has 10 cases within 5 minutes,
12 between 5-10 minutes, 1 within 10-15 minutes, and 7
instances with errors over 15 minutes. The results show that
Proteus achieves the highest precision. While the camera ac-
curately detects wetness, as light cannot penetrate leaves to
gather comprehensive information. The mmLeaf struggles
with feature extraction at low wetness levels. The LWS’s
inconsistent accuracy relies on synthetic leaves rather than
directly sensing actual leaf conditions.

5.2 Enhanced SAR Image Performance

In this section, we assess the impact of our SAR image en-
hancement technique. Our technique includes noise reduc-
tion (§ 3.2) and phase angle enhancement (§ 3.3). To assess
the effectiveness of these techniques, we conduct an abla-
tion study to compare each enhancement approach with
the original SAR images in terms of detection accuracy. Our
findings, summarized in Figure 10a, show that traditional
SAR images without enhancement have the lowest accuracy
84.55% =+ 2.33%. Add phase angle data alone improves ac-
curacy to 92.21% + 1.47%. Applying noise reduction alone
improves accuracy further to 93.76%+1.44%. The noise reduc-
tion and phase angle combination yield the highest accuracy,
reaching 96.3% + 1.62%. The result shows our technique ef-
fectively enhances the SAR image with less inference and
rich wetness information.

5.3 Cross-Modality Model Performance

We evaluate different feature extraction architectures that
perform well in the large classification dataset, including
ResNet-18 [23], VGG-16 [60], InceptionV3 [64], and with
our Cross-Modal Teacher-Student Network. The results are
shown in Figure 10b. Among the direct feature extraction
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Figure 11: Performance for Proteus application in different scenarios.

models, ResNet-18 achieves the highest accuracy at 92.52% +
2.18%. VGG16 and InceptionV3 follow, with accuracies of
88.5% + 2.32% and 85.13% =+ 1.91%, respectively. By incorpo-
rating our model design, which leverages an RGB-trained
Teacher model to guide a SAR-based Student model, we im-
prove accuracy to 96.3% + 1.62%. This knowledge transfer
enables the SAR model to capture deeper wetness features.

5.4 Performance in Dynamic Environments

We evaluate Proteus in both indoor and real farm environ-
ments. The focus is on how environmental factors affect
wetness detection accuracy and compares to baseline meth-
ods, including Hydra, mmLeaf, and the RGB camera. The
study includes five scenarios varying in environment, plant
type, wind condition, lighting, and distance. The results are
summarized in Figure 11.

5.4.1 Different Environment. We evaluate in two distinct en-
vironments: a controlled indoor lab and a real farm setting, as
shown in Figure 11a. In the controlled indoor environment,
Proteus achieve the highest precision at 97.2% + 1.21%. This
result underscores the effectiveness of Proteus. In compari-
son, baseline methods show lower accuracy, with Hydra at
94.28% + 1.53%, mmLeaf at 88.38% + 1.72%, and the camera
at 91.23% + 2.32%. In the real farm environment, Proteus
demonstrates resilience to dynamic scenarios. It maintains
the highest accuracy at 94.32% + 1.71%. Environmental fac-
tors like lighting, wind, and humidity have a more significant
effect on baseline methods. Hydra’s accuracy slightly drops
t0 90.14% + 2.14%. Both mmLeaf and camera perform well
in controlled indoor settings, but their accuracy drops in
more variable, real-world environments. The mmLeaf drop
to 79.43% + 2.53% and camera drop to 80.32% =+ 2.88%.

5.4.2 Wind Condition. Wind conditions can significantly
impact mmWave systems by changing the intensity of signal
reflection. We split the dataset into two categories: one with
wind and the other without wind. In the windy dataset, in-
cluding indoors, a fan simulated a constant wind, and in a real
farm setting under moderate natural wind conditions. The

results are shown in Figure 11b. It achieves 96.74% +1.23% ac-
curacy in no-wind settings and 95.28% + 1.38% under windy
scenarios. The results show that while mild wind reduces
wetness features, our system still accurately detects them.
It shows the robustness of our system in a diverse envi-
ronment. Hydra and camera-based systems also show re-
silience to wind. It accuracy drops from 93.42% + 1.52% in
no-wind conditions to 89.24%+2.12% under the wind. But the
4.18% performance drop is much more significant than the
1.46% degradation of Proteus. The camera system shows a
decrease from 90.14% + 1.38% to 88.28% + 1.65%. The mmLeaf
shows significant degradation, with accuracy falling from
87.53% + 1.84% to 72.43% + 2.44% under the wind, indicating
it is not reliable to rely on the intensity features solely.

5.4.3 Plant Type. We evaluate Proteus on two common
plant types: large/sparse and small/dense leaves. Large leaves
are prevalent in warm, humid regions to maximize photo-
synthesis, while smaller leaves are common in cooler, drier
areas for better water-use efficiency [49, 78]. Our evaluation
is conducted with various plant types indoors, with corn as
a large, sparse plant and soybean as a small, dense plant in a
real farm setting. As shown in Figure 11c, Proteus achieve
high accuracy across both leaf types, reaching 95.38% +1.54%
on large, sparse leaves and 96.56% + 1.47% on small, dense
leaves. In comparison, Hydra achieves 92.73% + 1.42% on
large leaves and 93.12% + 1.58% on small leaves; mmLeaf
show more variability with 88.62% + 1.93% for large leaves
and 84.7% + 2.12% for small leaves; and the camera reach
87.14%+2.38% and 80.43%+ 2.52%, respectively. These results
indicate Proteus’s superior adaptability and accuracy, partic-
ularly in complex plant structures where baseline methods
struggle with feature extraction.

5.4.4 Lighting Condition. We evaluate the impact of light-
ing conditions on Proteus. In an indoor environment, we
simulate various lighting intensities, while outdoor data is
captured at different times, including morning as normal
lighting and dawn/night as poor lighting. The results in Fig-
ure 11d show that Proteus maintains high precision across
lighting conditions, achieving 96.48% + 1.55% in normal light
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Table 1: Comparison between Proteus and Hydra++ for
Inference computational cost and the accuracy

Metric Proteus Hydra++
Extract Feature Time | 0.0907 seconds | 0.1130 seconds
Extract Feature Mem. 0.69 MB 0.89 MB
Total Time 1.1183s 3.1579s
Total Memory 1.43 MB 2.10 MB
Accuracy 96.3% 97.47%

and 96.21% =+ 1.41% in poor light. By comparison, Hydra
shows a slight decrease from 95.32% + 1.34% under normal
lighting to 91.28% =+ 2.47% in poor lighting since the camera
modality stops working. The camera system experiences a
more dramatic drop, from 91.52% + 2.41% to 74.93% + 3.52%.

5.4.5 Plant Distance. The performance of Proteus is further
evaluated by measuring its accuracy at varying distances
from a target plant in the range of [200 mm, 500 mm]. As
shown in Figure 11e, Proteus achieves its highest accuracy
of 96.73% + 1.12% at a 200 mm distance. At 300 mm and
400 mm, accuracy slightly decreases to 95.32% + 1.27% and
94.18% + 1.42%, respectively. At 500 mm, accuracy declines to
92.18% +1.53%. The increased distance will inevitably reduce
mmWave SAR imaging resolution. These results demonstrate
that while Proteus remains robust across different distances
within 500 mm with high precision.

5.5 Performance of Enhanced Hydra

The enhanced SAR imaging approach can be applied across
various SAR applications to reduce noise and richer texture
information. For example, Hydra [36] fuses mmWave and
RGB data for leaf wetness detection. We develop Hydra++, re-
placing the original SAR images in Hydra with our enhanced
approach to denoising and phase angle. In this section, with
the leaf wetness detection dataset, we compare Proteus with
Hydra++. Table 1 summarizes the key metrics, showing that
Hydra++ achieves the highest accuracy at 97.47%, slightly
surpassing Proteus at 96.3%. This is because the multi-modal
fusion in Hydra++ exploits more information than Proteus
with the same quality of mmWave images. Together with the
result shown in Figure 9a, Hydra++ outperforms Hydra by
2.97%, verifying the importance of enhancing the mmWave
image quality. However, this increased accuracy in Hydra++
comes at a higher computational cost, with an average total
process time of 3.1579 seconds and memory usage of 2.10 MB
for inference. In contrast, Proteus operates with only 1.1183
seconds of processing time and 1.43 MB of memory usage,
making it more efficient. Overall, Proteus and Hydra++ pro-
vide alternative solutions for accurate leaf wetness detection.
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There is a tradeoff between accuracy and computation effi-
ciency. Proteus has the potential to be deployed on edge, but
Hydra++ is better to be deployed on the cloud.

6 RELATED WORK

Leaf Water Content. Leaf Water Content (LWC) and Leaf
Wetness Duration (LWD) are distinct yet complementary
indicators of plant disease. LWC refers to the amount of water
within the leaf’s tissue. Recent advancements in wireless
technologies have enabled non-invasive monitoring of LWC,
including RFID, backscatter, mmWave, and photonic-crystal
resonance [7, 11, 12, 25]. These methods provide real-time
data without damaging the plant, making them ideal for
continuous monitoring in precision agriculture.

Cross-Modality Sensing. Cross-modality sensing combines
data from multiple sensors, such as RF, IMU, structural vibra-
tions, RGB, and infrared, to enhance detection and feature
extraction across various applications. It has improved gait
recognition [79], occupant detection [85], food tracking and
quality assessment [58], robotic sensing [73], and imaging
with high resolution and robustness [83].

Artificial Agricultural Internet of Things. The Inter-
net of Things (IoT) in agriculture combined with artificial
intelligence [59] enhances rural connectivity and disease
management through precise sensing. For Communication,
approaches like LoRa and satellite-based networks improve
data reliability over long distances [14, 17, 50—-52]. Sensing
methods, including RF and VNIR for soil monitoring and rein-
forcement learning for irrigation control, optimize resource
use and support crop health [13, 71].

7 CONCLUSION

In this paper, we introduced Proteus, a novel mmWave-based
system for accurate leaf wetness detection and Leaf Wet-
ness Duration measurement. Leveraging the sensitivity of
mmWave SAR, Proteus effectively captures subtle surface
changes on plant leaves. By emphasizing an SAR imaging per-
spective, Proteus enhances key features and employs a cross-
modality model tailored for agricultural applications. Our
system significantly reduces speckle noise and enriches SAR
images with enhanced texture details. Additionally, we im-
plemented a cross-modality teacher-student network where
an RGB-trained teacher model guides the SAR-based stu-
dent model. Our comprehensive evaluation demonstrates
that Proteus achieves up to 96% accuracy across diverse en-
vironmental conditions.

Acknowledgement

We sincerely thank the anonymous reviewers and our shep-
herd for their valuable feedback. This work was partially
supported by NSF CAREER Award 2338976.



Proteus: Enhanced mmWave Leaf Wetness Detection with Cross-Modality Knowledge Transfer

References
[1] F. Argenti and L. Alparone. 2002. Speckle removal from SAR images

[12

(13

(14

(15

—

—_

=

—

[t

[l

[

in the undecimated wavelet domain. IEEE Transactions on Geoscience
and Remote Sensing 40, 11 (2002), 2363-2374. https://doi.org/10.1109/
TGRS.2002.805083

Fabrizio Argenti, Alessandro Lapini, Tiziano Bianchi, and Luciano
Alparone. 2013. A tutorial on speckle reduction in synthetic aperture
radar images. IEEE Geoscience and remote sensing magazine 1, 3 (2013),
6-35.

Athanasios Balafoutis, Bert Beck, Spyros Fountas, Jurgen Vangeyte,
Tamme Van der Wal, Iria Soto, Manuel Gémez-Barbero, Andrew
Barnes, and Vera Eory. 2017. Precision agriculture technologies posi-
tively contributing to GHG emissions mitigation, farm productivity
and economics. Sustainability 9, 8 (2017), 1339.

Mark P. Blodgett and Daniel Eylon. 2001. The Influence of Texture and
Phase Distortion on Ultrasonic Attenuation in Ti-6Al-4V. Journal of
Nondestructive Evaluation 20, 1 (2001), 1-16. https://doi.org/10.1023/A:
1010611829059

Rodrigo Bongiovanni and Jess Lowenberg-Deboer. 2004. Precision
Agriculture and Sustainability. Precision Agriculture 5, 4 (Aug 2004),
359-387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014. Multimodal
distributional semantics. Journal of artificial intelligence research 49
(2014), 1-47.

Mark Cardamis, Hong Jia, Hao Qian, Wenyao Chen, Yihe Yan, Oula
Ghannoum, Aaron Quigley, Chung Tung Chou, and Wen Hu. 2024.
Leafeon: Towards Accurate, Robust and Low-cost Leaf Water Content
Sensing Using mmWave Radar. arXiv preprint arXiv:2410.03680 (2024).
Hyunho Choi and Jechang Jeong. 2019. Speckle noise reduction tech-
nique for SAR images using statistical characteristics of speckle noise
and discrete wavelet transform. Remote Sensing 11, 10 (2019), 1184.
Magnus Cinthio, Hideyuki Hasegawa, and Hiroshi Kanai. 2011. Initial
phantom validation of minute roughness measurement using phase
tracking for arterial wall diagnosis non-invasively in vivo. IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control 58, 4 (2011),
853-857. https://doi.org/10.1109/TUFFC.2011.1879

Pierrick Coupe, Pierre Hellier, Charles Kervrann, and Christian Barillot.
2009. Nonlocal means-based speckle filtering for ultrasound images.
IEEE Transactions on Image Processing 18, 10 (2009), 2221-2229. https:
//doi.org/10.1109/TIP.2009.2024064

Spyridon Nektarios Daskalakis, George Goussetis, Stylianos D Assi-
monis, Manos M Tentzeris, and Apostolos Georgiadis. 2018. A uW
backscatter-morse-leaf sensor for low-power agricultural wireless sen-
sor networks. IEEE Sensors Journal 18, 19 (2018), 7889-7898.
Shuvashis Dey, Emran Md Amin, and Nemai Chandra Karmakar. 2020.
Paper based chipless RFID leaf wetness detector for plant health mon-
itoring. IEEE Access 8 (2020), 191986-191996.

Xianzhong Ding and Wan Du. 2022. DRLIC: Deep Reinforcement
Learning for Irrigation Control. In 2022 21st ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). 41-53.
https://doi.org/10.1109/IPSN54338.2022.00011

Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Ar-
tur Balanuta, Swarun Kumar, Bob Iannucci, and Anthony Rowe. 2018.
Charm: Exploiting Geographical Diversity through Coherent Com-
bining in Low-Power Wide-Area Networks. In 2018 17th ACM/IEEE
International Conference on Information Processing in Sensor Networks
(IPSN)). 60-71. https://doi.org/10.1109/IPSN.2018.00013

Helen N. Fones, Daniel P. Bebber, Thomas M. Chaloner, William T. Kay,
Gero Steinberg, and Sarah J. Gurr. 2020. Threats to global food security
from emerging fungal and oomycete crop pathogens. Nature Food 1, 6
(Jun 2020), 332-342. https://doi.org/10.1038/s43016-020-0075-0

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

Spyros Fountas, Katerina Aggelopoulou, and Theofanis A. Gem-
tos. 2015. Precision Agriculture. John Wiley & Sons, Ltd,
Chapter 2, 41-65. https://doi.org/10.1002/9781118937495.ch2
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118937495.ch2
Akshay Gadre, Zachary Machester, and Swarun Kumar. 2024. Adapting
LoRa Ground Stations for Low-latency Imaging and Inference from
LoRa-enabled CubeSats. ACM Trans. Sen. Netw. 20, 5, Article 102 (July
2024), 30 pages. https://doi.org/10.1145/3675170

Maolin Gan, Yimeng Liu, Li Liu, Chenshu Wu, Younsuk Dong,
Huacheng Zeng, and Zhichao Cao. 2023. Poster: mmLeaf: Versatile
Leaf Wetness Detection via mmWave Sensing. In Proceedings of ACM
MobiSys.

General Tool. 2024. Moisture Meter. https://generaltools.com/digital-
tools/moisture-humidity-digital-tools/moisture-meters. Accessed:
2024-10-28.

METER Group. 2021. PHYTOS 31 Manual Web. METER Group. Re-
trieved Nov 21, 2022 from http://library.metergroup.com/Manuals/
20434_PHYTOS31_Manual_Web.pdf

Y. Guo, Y. Wang, and T. Hou. 2011. Speckle filtering of ultrasonic
images using a modified non local-based algorithm. Biomedical Signal
Processing and Control 6, 2 (2011), 129-138. https://doi.org/10.1016/j.
bspc.2010.10.004 Special Issue: The Advance of Signal Processing for
Bioelectronics.

Remigio A Guzman-Plazola, R. Michael Davis, and James ] Marois. 2003.
Effects of relative humidity and high temperature on spore germination
and development of tomato powdery mildew (Leveillula taurica). Crop
Protection 22, 10 (2003), 1157-1168. https://doi.org/10.1016/S0261-
2194(03)00157-1

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In IEEE CVPR.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In Proceedings IEEE CVPR.
NA Hoog, TE van den Berg, and HS Bindra. 2022. A 60 GHz pulsed
coherent radar for online monitoring of the withering condition of
leaves. Sensors and Actuators A: Physical 343 (2022), 113693.

Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Pantofaru,
David A Ross, Thomas Funkhouser, and Alireza Fathi. 2020. An Istm
approach to temporal 3d object detection in lidar point clouds. In
Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK,
August 23-28, 2020, Proceedings, Part XVIII 16. Springer, 266—282.
Zhenhua Huang, Xin Xu, Juan Ni, Honghao Zhu, and Cheng Wang.
2019. Multimodal Representation Learning for Recommendation in
Internet of Things. IEEE Internet of Things Journal 6, 6 (2019), 10675—
10685. https://doi.org/10.1109/JI0T.2019.2940709

L Huber and TJ Gillespie. 1992. Modeling leaf wetness in relation to
plant disease epidemiology. Annual review of phytopathology 30, 1
(1992), 553-577.

Texas Instruments. 2024. DCA1000EVM. https://www.ti.com/tool/
DCA1000EVM. Accessed: 2024-Oct-28.

Akash Kumar Kondaparthi, Won Suk Lee, and Natalia A. Peres. 2024.
Utilizing High-Resolution Imaging and Artificial Intelligence for Ac-
curate Leaf Wetness Detection for the Strawberry Advisory System
(SAS). Sensors 24, 15 (2024). https://doi.org/10.3390/524154836
Milan Koumans, Daan Meulendijks, Haiko Middeljans, Djero Peeters,
Jacob C. Douma, and Dook van Mechelen. 2024. Physics-assisted
machine learning for THz time-domain spectroscopy: sensing leaf
wetness. Scientific Reports 14, 1 (25 Mar 2024), 7034. https://doi.org/
10.1038/s41598-024-57161-4

Yumeng Liang, Anfu Zhou, Huanhuan Zhang, Xinzhe Wen, and
Huadong Ma. 2021. FG-LiquID: A Contact-less Fine-grained Liquid
Identifier by Pushing the Limits of Millimeter-wave Sensing. Proceed-
ings of ACM UbiCom (2021).



SenSys ’25, May 6-9, 2025, Irvine, CA, USA

[33] Hans J. Liebe, Kenneth C. Allen, George R. Hand, Robert H. Es-
peland, and Edmond J. Violette. 1985. Millimeter-Wave Propaga-
tion in Moist Air: Model Versus Path Data. Technical Report NTIA
Report 85-171. Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, Boulder, Col-
orado. https://its.ntia.gov/publications/download/85-171_ocr.pdf

[34] M Lin. 2013. Network in network. arXiv preprint arXiv:1312.4400
(2013).
[35] Yimeng Liu, Maolin Gan, Gen Li, Younsuk Dong, and Zhichao Cao.

2025. Adonis: Neural-enhanced Fine-grained Leaf Wetness Sensing
with Efficient mmWave Imaging. In Proceedings of IEEE INFOCOM.
Yimeng Liu, Maolin Gan, Huaili Zeng, Liu Li, Younsuk Dong, and
Zhichao Cao. 2024. Hydra: Accurate Multi-Modal Leaf Wetness Sensing
with mm-Wave and Camera Fusion. In Proceedings of ACM MobiCom.
[37] C.Lopez-Martinez and X. Fabregas. 2003. Polarimetric SAR speckle
noise model. IEEE Transactions on Geoscience and Remote Sensing 41,
10 (2003), 2232-2242. https://doi.org/10.1109/TGRS.2003.815240

Na Lu, Yidan Wu, Li Feng, and Jinbo Song. 2018. Deep learning for
fall detection: Three-dimensional CNN combined with LSTM on video
kinematic data. IEEE journal of biomedical and health informatics 23, 1
(2018), 314-323.

SJ MacKenzie and NA Peres. 2012. Use of leaf wetness and tempera-
ture to time fungicide applications to control anthracnose fruit rot of
strawberry in Florida. Plant disease 96, 4 (2012), 522-528.

Alenrex Maity, Anshuman Pattanaik, Santwana Sagnika, and Santosh
Pani. 2015. A Comparative Study on Approaches to Speckle Noise
Reduction in Images. In 2015 International Conference on Computational
Intelligence and Networks. 148-155. https://doi.org/10.1109/CINE.2015.
36

Adriano Meta, Peter Hoogeboom, and Leo P Ligthart. 2007. Signal
processing for FMCW SAR. IEEE Transactions on Geoscience and Remote
Sensing 45, 11 (2007), 3519-3532.

Microsoft. 2024.  Azure Kinect DK.  https://www.microsoft.
com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?msockid=
0466€eb3£d85864550530ff66d94b6503&activetab=pivot:overviewtab.
Accessed: 2024-10-28.

Concepcié Moragrega and Isidre Llorente. 2023. Effects of Leaf Wetness
Duration, Temperature, and Host Phenological Stage on Infection of
Walnut by Xanthomonas arboricola pv. juglandis. MDPI Plants 12, 15
(2023). https://doi.org/10.3390/plants12152800

Concepcié Moragrega and Isidre Llorente. 2023. Effects of Leaf Wetness
Duration, Temperature, and Host Phenological Stage on Infection of
Walnut by Xanthomonas arboricola pv. juglandis. MDPI Plants 12, 15
(2023). https://doi.org/10.3390/plants12152800

Natural Resources Conservation Service. 2023. Growing Season Dates
and Length. https://www.nrcs.usda.gov/wps/portal/wecc/home/
climateSupport/wetlandsClimateTables/growingSeasonDatesLength
Accessed: 2025-02-06.

Brian H Nguyen, Gregory S Gilbert, and Marco Rolandi. 2023. A
Bio-Mimetic Leaf Wetness Sensor from Replica Molding of Leaves.
Advanced Sensor Research 2, 6 (2023), 2200033.

Saurabh Vijay Parhad, Krishna K Warhade, and Sanjay S Shitole. 2024.
Speckle noise reduction in sar images using improved filtering and
supervised classification. Multimedia Tools and Applications 83, 18
(2024), 54615-54636.

Arth Patel, Won Suk Lee, Natalia A Peres, and Clyde W Fraisse. 2021.
Strawberry plant wetness detection using computer vision and deep
learning. Smart Agricultural Technology 1 (2021), 100013.

Daniel J. Peppe, Dana L. Royer, Barbara Cariglino, Sofia Y. Oliver,
Sharon Newman, Elias Leight, Grisha Enikolopov, Margo Fernandez-
Burgos, Fabiany Herrera, Jonathan M. Adams, Edwin Correa, Ellen D.

(36

[l

(38

=

(39

[

(40

[t

[41

—

[42

—

[43

[t

[44

=

(45

=

[46

=

[47

—

[48

—

[49

[

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Y Liu, M Gan, H Zeng, Y Ren, G Li, J Lin, Y Dong, X Tan Z Cao

Currano, J. Mark Erickson, Luis Felipe Hinojosa, John W. Hogan-
son, Ari Iglesias, Carlos A. Jaramillo, Kirk R. Johnson, Gregory ]J. Jor-
dan, Nathan J. B. Kraft, Elizabeth C. Lovelock, Christopher H. Lusk,
Ulo Niinemets, Josep Penuelas, Gillian Rapson, Scott L. Wing, and
Tan J. Wright. 2011. Sensitivity of leaf size and shape to climate:
global patterns and paleoclimatic applications. New Phytologist 190,
3 (2011), 724-739. https://doi.org/10.1111/j.1469-8137.2010.03615.
x arXiv:https://nph.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-
8137.2010.03615.x

Yidong Ren, Amalinda Gamage, Li Liu, Mo Li, Shigang Chen, Younsuk
Dong, and Zhichao Cao. 2024. SateRIoT: High-performance Ground-
Space Networking for Rural IoT. In Proceedings of ACM MobiCom.
Yidong Ren, Gen Li, Yimeng Liu, Younsuk Dong, and Zhichao Cao. 2025.
AeroEcho: Towards Agricultural Low-power Wide-area Backscatter
with Aerial Excitation Source. In Proceedings of IEEE INFOCOM.
Yidong Ren, Wei Sun, Jialuo Du, Huaili Zeng, Younsuk Dong, Mi
Zhang, Shigang Chen, Yunhao Liu, Tianxing Li, and Zhichao Cao.
2024. Demeter: Reliable Cross-soil LPWAN with Low-cost Signal
Polarization Alignment. In Proceedings of ACM MobiCom.

Jean B. Ristaino, Prabhu K. Anderson, Daniel P. Bebber, Kate A. Brau-
man, Nik J. Cunniffe, Nina V. Fedoroff, Cole Finegold, Karen A. Gar-
rett, Christopher A. Gilligan, Christine M. Jones, Michael D. Martin,
Graham K. MacDonald, Patrick Neenan, Andrea Records, David G.
Schmale, Louise Tateosian, and Qiang Wei. 2021. The persistent threat
of emerging plant disease pandemics to global food security. Pro-
ceedings of the National Academy of Sciences of the United States of
America 118, 23 (Jun 2021), €2022239118. https://doi.org/10.1073/
pnas.2022239118 Erratum in: Proc Natl Acad Sci U S A. 2021 Oct
5;118(40):€2115792118. doi: 10.1073/pnas.2115792118.

Jean B. Ristaino, Pamela K. Anderson, Daniel P. Bebber, Kate A. Brau-
man, Nik J. Cunniffe, Nina V. Fedoroff, Cambria Finegold, Karen A.
Garrett, Christopher A. Gilligan, Christopher M. Jones, Michael D. Mar-
tin, Graham K. MacDonald, Patricia Neenan, Angela Records, David G.
Schmale, Laura Tateosian, and Qingshan Wei. 2021. The persistent
threat of emerging plant disease pandemics to global food security. Pro-
ceedings of the National Academy of Sciences 118, 23 (2021), €2022239118.
https://doi.org/10.1073/pnas.2022239118

Tracy Rowlandson, Mark Gleason, Paulo Sentelhas, Terry Gillespie,
Carla Thomas, and Brian Hornbuckle. 2015. Reconsidering leaf wetness
duration determination for plant disease management. Plant Disease
99, 3 (2015), 310-319.

Nupur Saxena and Neha Rathore. 2013. A review on speckle noise
filtering techniques for SAR images. International Journal of Advanced
Research in Computer Science and Electronics Engineering (IJARCSEE)
2,2 (2013), 243-247.

Jack Schieffer and Carl Dillon. 2015. The economic and environ-
mental impacts of precision agriculture and interactions with agro-
environmental policy. Precision Agriculture 16, 1 (Feb 2015), 46-61.
https://doi.org/10.1007/s11119-014-9382-5

Amit Sharma, Archan Misra, Vengateswaran Subramaniam, and
Youngki Lee. 2019. SmrtFridge: IoT-based, user interaction-driven
food item & quantity sensing (SenSys ’19). Association for Computing
Machinery, New York, NY, USA, 245-257. https://doi.org/10.1145/
3356250.3360028

Shakhrul Iman Siam, Hyunho Ahn, Li Liu, Samiul Alam, Hui Shen,
Zhichao Cao, Ness Shroff, Bhaskar Krishnamachari, Mani Srivastava,
and Mi Zhang. 2024. Artificial Intelligence of Things: A Survey. ACM
Trans. Sen. Netw. (Aug. 2024). https://doi.org/10.1145/3690639 Just
Accepted.

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014).  https://api.semanticscholar.org/CorpusID:



Proteus: Enhanced mmWave Leaf Wetness Detection with Cross-Modality Knowledge Transfer SenSys ’25, May 6-9, 2025, Irvine, CA, USA

14124313 [77] H. Weyl. 1919. Ausbreitung elektromagnetischer Wellen iiber einem
[61

—

—

= =

=

=

[t

[t

—

—

[t

=

= =

Brajesh K. Singh, Manuel Delgado-Baquerizo, Eleonora Egidi, Emilio
Guirado, Jan E. Leach, Hongwei Liu, and Pankaj Trivedi. 2023. Climate
change impacts on plant pathogens, food security and paths forward.
Nature Reviews Microbiology 21, 10 (Oct 2023), 640-656. https://doi.
org/10.1038/s41579-023-00900-7

Prabhishek Singh and Raj Shree. 2016. Analysis and effects of speckle
noise in SAR images. In 2016 2nd International Conference on Advances
in Computing, Communication, & Automation (ICACCA)(Fall). IEEE,
1-5.

Andrew G Stove. 1992. Linear FMCW radar techniques. In Proceedings
IET Radar and Signal Processing.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. 2015. Rethinking the Inception Architecture for
Computer Vision. arXiv:1512.00567 [cs.CV]

Nicolas Tapia-Zapata, Andreas Winkler, and Manuela Zude-Sasse.
2024. Occurrence of Wetness on the Fruit Surface Modeled Using
Spatio-Temporal Temperature Data from Sweet Cherry Tree Canopies.
Horticulturae 10, 7 (2024).

Texas Instruments. 2024. IWR1642. https://www.ti.com/product/
IWR1642. Accessed: 2024-Oct-28.

THE WORLD BANK. 2024. Leaf Wetness Sensor, Vantage Pro2™
and EnviroMonitor. https://www.davisinstruments.com/products/leaf-
wetness-sensor-vantage-pro-and-vantage-pro2. Accessed: 2024-03-
15.

UC SANTA CRUZ. 2024. Leaf wetness sensor will enable better plant
disease forecasting and management. https://news.ucsc.edu/2023/03/
leaf-wetness-sensors.html. Accessed: 2024-03-15.

Yozo Utsumi and Toshihisa Kamei. 2004. Dielectric permittiv-
ity measurements of liquid crystal in the microwave and mil-
limeter wave ranges.  Molecular Crystals and Liquid Crystals
409, 1 (2004), 355-370. https://doi.org/10.1080/15421400490433695
arXiv:https://doi.org/10.1080/15421400490433695

Michiel van Dijk, Timothy Morley, Marie-Laure Rau, and Yashar Saghai.
2021. A meta-analysis of projected global food demand and population
at risk of hunger for the period 2010-2050. Nature Food 2, 7 (Jul 2021),
494-501. https://doi.org/10.1038/s43016-021-00322-9 Epub 2021 Jul
21.

Juexing Wang, Yuda Feng, Gouree Kumbhar, Guangjing Wang, Qiben
Yan, Qingxu Jin, Robert C. Ferrier, Jie Xiong, and Tianxing Li. 2024.
SoilCares: Towards Low-cost Soil Macronutrients and Moisture Moni-
toring Using RF-VNIR Sensing. In Proceedings of ACM MobiSys.

Jun Wang, Tong Zheng, Peng Lei, and Xiao Bai. 2018. Ground target
classification in noisy SAR images using convolutional neural net-
works. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 11, 11 (2018), 4180-4192.

Ruihao Wang, Yimeng Liu, and Rolf Miiller. 2022. Detection of pas-
sageways in natural foliage using biomimetic sonar. Bioinspiration &
Biomimetics 17, 5 (2022), 056009.

Xu Wang, Yanxia Wu, Changting Shi, Ye Yuan, and Xue Zhang. 2024.
ANED-Net: Adaptive Noise Estimation and Despeckling Network for
SAR Image. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 17 (2024), 4036-4051. https://doi.org/10.1109/
JSTARS.2024.3355220

Albert Weiss. 1990. Leaf wetness: measurements and models. Remote
Sensing Reviews 5, 1 (1990), 215-224.

Dongmei Wen, Aixin Ren, Tao Ji, Isabel Maria Flores-Parra, Xinting
Yang, and Ming Li. 2020. Segmentation of thermal infrared images
of cucumber leaves using K-means clustering for estimating leaf wet-
ness duration. International Journal of Agricultural and Biological
Engineering 13, 3 (2020), 161-167.

ebenen Leiter. Annalen der Physik 365, 21 (1919), 481-500. https:
//doi.org/10.1002/andp.19193652104

Ian J. Wright, Ning Dong, Vincent Maire, I. Colin Prentice, Mark
Westoby, Sandra Diaz, Rachael V. Gallagher, Bonnie F. Jacobs, Robert
Kooyman, Elizabeth A. Law, Michelle R. Leishman, Ulo Niinemets,
Peter B. Reich, Lawren Sack, Rafael Villar, Han Wang, and Pe-
ter Wilf. 2017. Global climatic drivers of leaf size.  Science
357, 6354 (2017), 917-921.  https://doi.org/10.1126/science.aal4760
arXiv:https://www.science.org/doi/pdf/10.1126/science.aal4760
Huangqi Yang, Mingda Han, Mingda Jia, Zehua Sun, Pengfei Hu, Yu
Zhang, Tao Gu, and Weitao Xu. 2024. XGait: Cross-Modal Translation
via Deep Generative Sensing for RF-based Gait Recognition (SenSys
’23). Association for Computing Machinery, New York, NY, USA, 43-55.
https://doi.org/10.1145/3625687.3625792

Muhammet Emin Yanik and Murat Torlak. 2019. Near-Field MIMO-
SAR Millimeter-Wave Imaging With Sparsely Sampled Aperture Data.
IEEE Access 7 (2019), 31801-31819. https://doi.org/10.1109/ACCESS.
2019.2902859

Muhammet Emin Yanik, Dan Wang, and Murat Torlak. 2020. Develop-
ment and demonstration of MIMO-SAR mmWave imaging testbeds.
IEEE Access 8 (2020), 126019-126038.

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A
review of recurrent neural networks: LSTM cells and network archi-
tectures. Neural computation 31, 7 (2019), 1235-1270.

Feng Zhang, Chenshu Wu, Beibei Wang, and K. J. Ray Liu. 2021. mm-
Eye: Super-Resolution Millimeter Wave Imaging. IEEE Internet of
Things Journal 8, 8 (2021), 6995-7008. https://doi.org/10.1109/JIO0T.
2020.3037836

Xiyuan Zhang, Xiaohan Fu, Diyan Teng, Chengyu Dong, Keerthivasan
Vijayakumar, Jiayun Zhang, Ranak Roy Chowdhury, Junsheng Han,
Dezhi Hong, Rashmi Kulkarni, Jingbo Shang, and Rajesh K. Gupta.
2024. Physics-Informed Data Denoising for Real-Life Sensing Systems.
In Proceedings of the 21st ACM Conference on Embedded Networked
Sensor Systems (Istanbul, Turkiye) (SenSys "23). Association for Com-
puting Machinery, New York, NY, USA, 83-96. https://doi.org/10.
1145/3625687.3625811

Yue Zhang, Zhizhang Hu, Uri Berger, and Shijia Pan. 2023. CMA: Cross-
Modal Association Between Wearable and Structural Vibration Signal
Segments for Indoor Occupant Sensing. In Proceedings of the 22nd Inter-
national Conference on Information Processing in Sensor Networks (San
Antonio, TX, USA) (IPSN °23). Association for Computing Machinery,
New York, NY, USA, 96-109. https://doi.org/10.1145/3583120.3586960



